Методика измерения вязкости

Автор работы: Пользователь скрыл имя, 12 Февраля 2015 в 09:20, курсовая работа

Описание работы

Вязкость - свойство жидкостей оказывать сопротивление перемещению одного слоя относительно другого. Количественно вязкость характеризуется значением динамической вязкости или коэффициентом внутреннего трения. Характерной особенностью этого вида трения является то, что оно наблюдается не на границе твердого тела и жидкости, а во всем объеме жидкости.

Содержание работы

Введение……………………………………………….……………………….3
Объект измерения……………………………….……………………………..5
Методы и средства измерения………………………….………….………….8
3.1 Методы измерения……………………………….………………….….8
3.2 Средства измерения…………………………………………………….11
4. Выбор СИ………………………….…………………………………………….29
5. Методика выполнения измерений………………

Файлы: 1 файл

метотдика измерения вязкости.doc

— 387.00 Кб (Скачать файл)

Прибор для измерения вязкости называется вискозиметром.

В настоящее время число вискозиметров различной конструкции весьма велико, и их количество продолжает расти. Только в нефтяной вискозиметрии применяется или применялось около 200 приборов. Такое значительное число вискозиметров объясняется разнообразием задач вискозиметрии и различием свойств исследуемых жидкостей и пластичных тел. Невозможно создать универсальные вискозиметры или пластометры, одинаково пригодные для всех случаев.

По принципиальным особенностям конструкции приборы для измерения вязкости делятся на следующие типы:

  1. Капиллярные вискозиметры;
  2. Ротационные вискозиметры, или приборы с коаксиальными цилиндрами;
  3. Вискозиметры с падающим шариком;
  4. Маятниковые вискозиметры;
  5. Вискозиметры с взаимно смещающимися цилиндрами или пластинками;
  6. Приборы, основанные на принципе сдувания тонкого слоя жидкости;
  7. Вискозиметры, основанные на других принципах.

Капиллярные вискозиметры

Принцип действия основан на подсчёте времени протекания заданного объёма жидкости через узкое отверстие или трубку, при заданной разнице давлений. Чаще всего жидкость из резервуара вытекает под действием собственного веса, в таком случае вязкость пропорциональна разнице давлений между жидкостью, вытекающей из капилляра и жидкостью на том же уровне, вытекающей из очень толстой трубки. С помощью капиллярного вискозиметра измеряются вязкости от 10 мкПа∙с(газы) до 10 кПа∙с. Используют вискозиметры по ASTM D 445(ГОСТ 33).

Ротационные вискозиметры

Два тела вращения, одинаковых или разных, совмещаются по осям так, что одно из них прикасается изнутри к другому (примером может послужить сфера вписанная в конус). Пространство между телами заполняют исследуемым веществом, и к одному из тел подаётся крутящий момент, тело начинает вращаться с угловой скоростью, зависящей от вязкости вещества (у вискозиметров, как правило, стабилизируется скорость вращения и измеряется крутящий момент). Диапазон работы стандартных вискозиметров простирается от 1 мПа·с до сотен тысяч Па·с. Такой широкий диапазон измерений достижим за счёт изменения скорости вращения шпинделя от 0,01 оборота в минуту до 100, а также за счёт использования шпинделей разных размеров при разных диапазонах вязкости.

Вискозиметр с движущимся шариком

Вискозиметр основан на законе Стокса. Вязкость определяется по времени прохождения шариком некоего расстояния, чаще всего под воздействием его собственного веса. Наиболее известен вискозиметр Гепплера.

Вискозиметр с вибрирующим зондом

Основан на изменении резонансной частоты колебаний в жидкости различной вязкости. Так как частота будет зависеть и от плотности измеряемой жидкости, некоторые модели позволяют определять эту плотность независимо от вязкости, тогда как другие используют заданное известное значение плотности.

Наиболее распространены капиллярные вискозиметры. Поданным М. П. Воларовича , около 80% всех измерений вязкости производится с их помощью. Эти приборы отличаются простотой, требуют малого количества жидкости, дешевы и дают достаточно точные результаты. К числу их недостатков относится невозможность измерения вязкости очень вязких жидкостей.

Второе место занимают ротационные вискозиметры. Эти приборы обеспечивают однородное поле напряжения в жидкости и позволяют измерять вязкость с высокой точностью. Сложность конструкции ротационных вискозиметров ограничивает их применение. К недостаткам их следует также отнести накопление в деформируемой жидкости диссипированного тепла. В капиллярных приборах это тепло уносится вместе с протекающей жидкостью. Ротационные вискозиметры применяются преимущественно для измерения вязкости дисперсных систем и высоковязких жидкостей и дополняют капиллярные приборы.

К простым приборам относятся также вискозиметры с падающим шариком, но с их помощью можно получить хорошие результаты только у вязких и вполне однородных жидкостей.

Для измерения пластичности и вообще реологических свойств веществ наряду с вязкостью необходимо определять предельные напряжения сдвига и модули упругости. Принципиально такие измерения могут производиться в вискозиметрах всех перечисленных групп, но в то время как при вискозиметрии измеряют значительные деформации (например, протекание всего исследуемого объема жидкости через капилляр), при определении модуля упругости и предельного напряжения сдвига наблюдают малые деформации. Для измерений малых деформаций более удобны вискозиметры с взаимно смещающимися цилиндрами или пластинками и ротационные вискозиметры.

Если при определении вязкости жидкостей наблюдают только скорость деформации при постоянном напряжении, то при изучении пластичных тел измеряют также силу, вызывающую начало течения, и размер деформации при различных нагрузках ниже предела текучести. Отличие пластометров от вискозиметров заключается в том, что первые снабжены приспособлениями для варьирования напряжения. Вискозиметры для исследования аномалии вязкости имеют устройства для изменения скорости течения жидкости (в частности, капиллярные вискозиметры - установки для изменения разности давлении на концах капилляра).

В нефтяной вискозиметрии капиллярные приборы являются основным типом вискозиметров для светлых нефтепродуктов и минеральных масел при положительных температурах. При низких температурах для масел применяют как капиллярные, так и ротационные вискозиметры. lgη=f(t), полученные в капиллярных и ротационных вискозиметрах, совпадают до температур порядка - 30°. У масел с вязкостью Еб0 = 10 - 15 вязкость, полученная обоими методами, совпадает до температур порядка - 10.

Для изучения консистентных смазок и битумов пользуются преимущественно приборами со смещающимися цилиндрами и пластинками, ротационными вискозиметрами и вискозиметрами с падающими шариками. В последнее время Г. В. Виноградов и В. П. Павлов сконструировали капиллярный вискозиметр для консистентных смазок. Кроме физически обоснованных вискозиметров, в нефтяных лабораториях сохранились вискозиметры, устройство которых основано на условных технических методах оценки реологических свойств. Некоторые из них, как, например, методы определения температуры застывания или каплепадения, предназначены для определения температуры изменения свойств нефтепродуктов. Другие позволяют сравнивать свойства испытуемых веществ с известными или эталонными продуктами. Многие из этих методов страдают существенными дефектами. Так, в вискозиметре Энглера не всегда обеспечивается ламинарное течение, в приборах для определения температуры застывания недостаточно определено напряжение, да и вообще неясно, наблюдается ли предел текучести или высокая вязкость. Одна из наиболее актуальных задач нефтяной вискозиметрии заключается в замене определения вязкости при помощи условных методов определением простыми, физически обоснованными приборами.

Сложность реологических свойств смазок, масел и топлив при низких температурах, а также недостатки условных технических вискозиметров и пластометров привели к тому, что для оценки механических свойств этих нефтепродуктов в условиях эксплуатации были предложены специальные приборы, представляющие собой модели масляных систем двигателей или других механизмов или непосредственно части этих систем. К ним относятся приборы В. К. Лимаря и В. Г. Сидорова , К. С. Рамайя и В. В. Соколова для определения прокачиваемости масел при низких температурах, установка Д. Л. Гольдштейна, 3. В. Векслера и Г. Е. Журавлева для определения нижнего температурного предела эксплуатации дизельных топлив и кинематические пары поршень-цилиндр и вал-подшипник, применявшиеся М. П. Вола-ровичем для исследования минеральных масел при низких температурах.

Вискозиметры, позволяющие измерять вязкость в абсолютных единицах (пуазах и стоксах), делятся на первичные и вторичные. В первичных вискозиметрах весьма точно определяются размеры прибора, объем протекшей жидкости и напряжение. Они служат для измерения вязкости первичных (калибровочных) жидкостей и для весьма точных измерений вязкости остальных жидкостей,

Абсолютные вискозиметры довольно сложны по устройству и применяются главным образом для специальных физико-химических исследований. Для практических целей пользуются вторичными вискозиметрами, в которых вязкость измеряется путем сравнения скорости течения испытуемой жидкости с эталонной, вязкость которой измерена в первичном вискозиметре.

Основными калибровочными жидкостями служат вода, касторовое масло, раствор сахара в воде, некоторые индивидуальные органические соединения и минеральные масла.

В приложении к ГОСТ 33-46 указаны значения вязкости ряда органических соединений (фенол, анилин, хинолин, этиленгликоль, форм амид и т. д.). которые могут применяться в качестве калибровочных жидкостей.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: пуаз, 0,1Па·с) и кинематическую вязкость (единицы измерения: стокс, м²/с, внесистемная единица - градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 1011-1012 Па·с.

Первый вискозиметр был предложен еще в 1752 г. М. В. Ломоносовым . Вязкость в этом приборе (рис. 2) измерялась по скорости протекания жидкости через зазор между стенками воронки и вставленным в нее шаром. Величину зазора можно было регулировать, поднимая или опуская шар. Воронка наполнялась до постоянного уровня из специального резервуара, что обеспечивало постоянное гидростатическое давление на жидкость в зазоре, а следовательно, и постоянное напряжение. Скорость течения измерялась числом капель, падающих из воронки за единицу времени. Прибор Ломоносова включал многие основные элементы современных вискозиметров.

В восьмидесятых годах прошлого столетия Ф. Н. Шведов разработал оригинальный метод определения реологических параметров дисперсных систем по закручиванию цилиндра, подвешенного на упругой нити и погруженного в жидкость. Прибор Шведова был одним из первых вискозиметров с коаксиальными цилиндрами. В последнее время этот прибор усовершенствован в лаборатории П. А. Ребиндера. Возникновение нефтяной вискозиметрии связано с именем Н. П. Петрова . В конце прошлого столетия он провел обширные и очень тщательные измерения вязкости ряда минеральных и растительных масел с помощью сконструированного им капиллярного прибора (рис. 2). В это же время С. Ламанский предложил специальный вискозиметр для масел, имеющий ряд преимуществ по сравнению с появившимся позднее вискозиметром Энглера.

Рисунок 2 - Первый вискозиметр М.В. Ломоносова

1. Капиллярные вискозиметры.

Капиллярные вискозиметры измеряют расход фиксированного объема жидкости через малое отверстие при контролируемой температуре. Скорость сдвига можно измерить примерно от нуля до 106 с-1, заменяя капиллярный диаметр и приложенное давление (рис. 3).

Типы капиллярных вискозиметров и их режимы работы:

Стеклянный капиллярный вискозиметр (ASTM D 445) - жидкость проходит через отверстие устанавливаемого - диаметра под влиянием силы тяжести. Скорость сдвига - меньше чем 10 с-1. Кинематическая вязкость всех автомобильных масел измеряется капиллярными вискозиметрами. Капиллярный вискозиметр высокого давления (ASTM D 4624 и D 5481) - фиксированный объем жидкости выдавливается через стеклянный капилляр диаметра под действием приложенного давления газа. Скорость сдвига может быть изменена до 106 с-1. Эта методика обычно используется, чтобы моделировать вязкость моторных масел в рабочих коренных подшипниках. Эта вязкость называется, вязкостью при высокой температуре и высоком сдвиге (HTHS) и измеряется при 150°C и 106 с-1. HTHS вязкость измеряется также имитатором конического подшипника, ASTM D 4683.

Установившийся ламинарный поток в капилляре описывается уравнением Хаген–Пуазейля:

                                             η=πR4˟(p1-p2)/8VL                                                (10)

где R - радиус капилляра;

р1 - давление на входе;

р2 - давление на выходе;

V - объемный расход;

L - длина капилляра.

Рисунок 3 - Схема капиллярного вискозиметра:

1 – дозирующий  насос; 2 – капилляр; 3 – импульсные трубки измерения давлений; 4 - преобразователь разности давлений; 5 - указатель вязкости; 6 - основной трубопровод

Таким образом; определяемая динамическая вязкость пропорциональна разности давлений на входе и выходе капилляра: Dp = p1 - р2. Влияние набегающего потока на выходе капилляра обусловливает необходимость измерения давлений внутри самого капилляра, т.е. в достаточном удалении от его концов, что связано с рядом технических сложностей. Поэтому практически давление измеряют в расширенных концах капиллярной трубки и корректируют по экспериментальным и расчетным данным.

Для уменьшения искажающего воздействия набегающего потока в реальных конструкциях применяют длинные капилляры. Капиллярный принцип измерения вязкости используют в вискозиметрах многих конструкций. Часто, например, измерение вязкости осуществляют путем отсчета времени истечения определенного количества контролируемой среды при постоянном перепаде давлений на капилляре.

Информация о работе Методика измерения вязкости