Автор работы: Пользователь скрыл имя, 03 Марта 2015 в 16:32, контрольная работа
N заряженных шариков одинакового радиуса и массы подвешены на нитях одинаковой длины, закрепленных в одной точке. Опуская шарики в жидкий диэлектрик, заметили, что угол отклонения нитей от вертикали в воздухе и диэлектрике остается одним и тем же. Зная плотность материала шариков ρ1 и диэлектрика ρ2, определите его диэлектрическую проницаемость.
По современным представлениям, рождение Вселенной должно описываться в терминах еще не созданной квантовой теории гравитации. Понятие «возраст Вселенной» имеет смысл для моментов времени не раньше 10-43 секунд. На меньших масштабах уже нельзя говорить о привычном нам линейном течении времени. Топологические свойства пространства тоже становятся нестабильными. По-видимому, в малых масштабах пространство-время заполнено микроскопическими «кротовыми норами» — своего рода тоннелями, соединяющими разнесенные области Вселенной. Впрочем, о расстояниях или порядке следования событий говорить тоже невозможно. В научной литературе такое состояние пространства-времени с флуктуирующей топологией называют квантовой пеной.
По неизвестным пока причинам, возможно, из-за квантовой флуктуации, в пространстве Вселенной возникает физическое поле, которое в возрасте около 10-35 секунд заставляет Вселенную расширяться с колоссальным ускорением. Этот процесс называют инфляцией, а вызывающее его поле — инфлатоном. В отличие от экономики, где инфляция является неизбежным злом, с которым нужно бороться, в космологии инфляция, то есть экспоненциально быстрое увеличение Вселенной, — это благо. Именно ей мы обязаны тем, что Вселенная обрела большой размер и плоскую геометрию.
В конце этой короткой эпохи ускоренного расширения запасенная в инфлатоне энергия порождает известную нам материю: разогретую до огромной температуры смесь излучения и массивных частиц, а также едва заметную на их фоне темную энергию. Можно сказать, что это и есть Большой взрыв. Космологи говорят об этом моменте, как о начале радиационно-доминированной эпохи в эволюции Вселенной, поскольку большая часть энергии в это время приходится на излучение.
Однако расширение Вселенной продолжается (хотя теперь уже и без ускорения) и оно по-разному отражается на основных типах материи. Ничтожная плотность темной энергии со временем не меняется, плотность вещества падает обратно пропорционально объему Вселенной, а плотность излучения снижается еще быстрее.
В итоге спустя 300 тысяч лет доминирующей формой материи во Вселенной становится вещество, большую часть которого составляет темная материя. С этого момента рост возмущений плотности вещества, едва тлевший на стадии доминирования излучения, становится достаточно быстрым, чтобы привести к образованию галактик, звезд и столь необходимых человечеству планет. Движущей силой этого процесса является гравитационная неустойчивость, приводящая к скучиванию вещества. Едва заметные неоднородности оставались еще с момента распада инфлатона, но пока во Вселенной доминировало излучение, оно мешало развитию неустойчивости.
Теперь основную роль начинает играть темная материя. Под действием собственной гравитации области повышенной плотности останавливаются в своем расширении и начинают сжиматься, в результате чего из темной материи образуются гравитационносвязанные системы, называемые гало. В гравитационном поле Вселенной образуются «ямы», в которые устремляется обычное вещество. Накапливаясь внутри гало, оно формирует галактики и их скопления.
Этот процесс образования структур начался более 10 миллиардов лет назад и шел по нарастающей, пока не наступил последний перелом в эволюции Вселенной. Через 7 миллиардов лет (это примерно половина нынешнего возраста Вселенной) плотность вещества, которая продолжала снижаться из-за космологического расширения, стала меньше плотности темной энергии. Тем самым завершилась эпоха доминирования вещества, и теперь темная энергия контролирует эволюцию Вселенной.
Какова бы ни была ее физическая природа, проявляется она в том, что космологическое расширение вновь, как в эпоху инфляции, начинает ускоряться, только на этот раз очень медленно. Но даже этого достаточно, чтобы затормозить формирование структур, а в будущем оно должно вовсе прекратиться: любые недостаточно плотные образования будут рассеиваться ускоряющимся расширением Вселенной. Временное «окно», в котором работает гравитационная неустойчивость и возникают галактики, захлопнется уже через десяток миллиардов лет.
Дальнейшая эволюция Вселенной зависит от природы темной энергии. Если это космологическая постоянная, то ускоренное расширение Вселенной будет продолжаться вечно. Если же темная энергия — это сверхслабое скалярное поле, то после того как оно достигнет состояния равновесия, расширение Вселенной станет замедляться, а возможно сменится сжатием. Пока физическая природа темной энергии неизвестна, все это не более чем умозрительные гипотезы.
Увидеть темную материю нельзя, но по косвенным признакам можно узнать ее распределение на разных расстояниях. В дальнейшем по таким срезам восстанавливается трехмерная карта темной материи. Фото: NASA, ESA, R. MASSEY (CALIFORNIA INSTITUTE OF TECHNOLOGY)
Таким образом, с определенностью сказать можно только одно: ускоренное расширение Вселенной будет продолжаться еще несколько десятков миллиардов лет. За это время наш космический дом — галактика Млечный Путь — сольется со своей соседкой — Туманностью Андромеды (и большинством галактик-спутников меньшей массы, входящих в состав Местной Группы).
Все прочие галактики улетят на большие расстояния, так что многие из них нельзя будет увидеть даже в самый мощный телескоп. Что касается реликтового излучения, которое приносит нам так много важнейшей информации о структуре Вселенной, то его температура упадет почти до нуля, и этот источник информации будет потерян. Человечество останется Робинзоном на острове с эфемерной перспективой обзавестись хотя бы Пятницей.
У космологов имеются два основных источника знаний о крупномасштабной структуре Вселенной. Прежде всего это распределение в окружающем нас пространстве светящейся материи, то есть галактик. Трехмерная карта показывает, в какие структуры — группы, скопления, сверхскопления — объединяются галактики и каковы характерные размеры, формы и численность этих образований. Тем самым становится понятно, как распределено вещество в современной Вселенной.
Другим источником информации служит распределение интенсивности реликтового излучения по небесной сфере. Карта неба в микроволновом диапазоне несет информацию о распределении неоднородностей плотности в ранней Вселенной, когда ее возраст составлял около 300 тысяч лет — именно тогда вещество стало прозрачным для излучения. Угловые расстояния между пятнами на микроволновой карте говорят о размерах неоднородностей в то время, а перепады яркости (они, кстати, очень маленькие, порядка сотой доли процента) указывают на степень уплотнения зародышей будущих скоплений галактик. Тем самым у нас есть как бы два временных среза: структура Вселенной в моменты через 300 тысяч и 14 миллиардов лет после Большого взрыва.
Теория говорит о том, что характеристики наблюдаемых структур сильно зависят от того, какая часть материи во Вселенной приходится на вещество (обычное и темное). Расчеты, основанные на наблюдательных данных, показывают, что его доля составляет сегодня около 30% (из которых лишь 5% приходится на обычное вещество, состоящее из атомов). А значит, остальные 70% — это материя, не входящая ни в какие структуры, то есть темная энергия. Этот аргумент не столь прозрачен, поскольку за ним стоят сложные расчеты, описывающие образования структур во Вселенной. Тем не менее он действительно более сильный. Это можно проиллюстрировать такой аналогией.
Представьте, что внеземная цивилизация стремится обнаружить разумную жизнь на Земле. Одна группа исследователей заметила идущее от нашей планеты мощное радиоизлучение, которое периодически изменяет частоту и интенсивность, и объясняет это работой электронного оборудования. Другая группа послала к Земле зонд и сфотографировала квадраты полей, линии дорог, узлы городов. Первый аргумент, конечно, проще, но второй — убедительнее.
Продолжая эту аналогию, можно сказать, что еще более наглядным свидетельством разумной жизни стало бы наблюдение за формированием перечисленных структур. Конечно, человеку пока не под силу в реальном времени наблюдать, как формируются скопления галактик. Тем не менее можно определить, как менялось их число по ходу эволюции Вселенной. Дело в том, что в силу конечности скорости света наблюдение объектов на больших расстояниях эквивалентно заглядыванию в прошлое.
Темп образования галактик и их скоплений определяется скоростью роста возмущений плотности, которая, в свою очередь, зависит от параметров космологической модели, в частности от соотношения вещества и темной энергии. Во Вселенной с большой долей темной энергии возмущения растут медленно, а значит, сегодня скоплений галактик должно быть ненамного больше, чем в прошлом, и с расстоянием их число будет убывать медленно. Напротив, во Вселенной без темной энергии количество скоплений довольно быстро сокращается с углублением в прошлое. Выяснив из наблюдений темп появления новых скоплений галактик, можно получить независимую оценку плотности темной энергии.
Разные срезы относятся к разным моментам в прошлом. Поэтому данная карта является пространственновременной и отражает эволюцию распределения материи. Фото: NASA, ESA, R. MASSEY (CALIFORNIA INSTITUTE OF TECHNOLOGY)
Есть и другие независимые наблюдательные аргументы, подтверждающие существование однородной среды, которая оказывает определяющее влияние на строение и эволюцию Вселенной. Можно сказать, что утверждение о существовании темной энергии стало итогом развития всей наблюдательной космологии ХХ века.
Если в существовании темной энергии большинство космологов уже не сомневаются, то вот относительно ее природы ясности пока нет. Впрочем, физики не первый раз попадают в такое положение. Многие новые теории начинаются с феноменологии, то есть формального математического описания того или иного эффекта, а интуитивно понятные объяснения появляются намного позже. На сегодня, описывая физические свойства темной энергии, космологи произносят слова, которые для непосвященного больше похожи на заклинание: это среда, давление которой равно плотности энергии по величине, но противоположно по знаку. Если это странное соотношение подставить в уравнение Эйнштейна из общей теории относительности, то окажется, что такая среда гравитационно отталкивается от самой себя и, как следствие, ускоренно расширяется и ни за что не соберется ни в какие сгустки.
Нельзя сказать, что мы часто имеем дело с подобной материей. Однако именно так уже на протяжении многих лет физики описывают вакуум. По современным представлениям, элементарные частицы существуют не в пустом пространстве, а в особой среде — физическом вакууме, который как раз и определяет их свойства. Эта среда может находиться в различных состояниях, отличающихся плотностью запасенной энергии, и в разных видах вакуума элементарные частицы ведут себя по-разному.
Наш обычный вакуум обладает наименьшей энергией. Экспериментально обнаружено существование неустойчивого, более энергичного вакуума, который соответствует так называемому электрослабому взаимодействию. Он начинает проявляться при энергиях частиц свыше 100 гигаэлектронвольт — это всего на порядок ниже предела возможностей современных ускорителей. Еще более энергичные виды вакуума предсказаны теоретически. Можно предположить, что наш обычный вакуум обладает не нулевой плотностью энергии, а как раз такой, которая дает нужное значение лямбда-члена в уравнении Эйнштейна.
Однако эта красивая идея, состоящая в том, чтобы приписать темную энергию вакууму, не вызывает восторга у исследователей, работающих на стыке физики элементарных частиц и космологии. Дело в том, что такой разновидности вакуума должна соответствовать энергия частиц всего около тысячной доли электронвольта. Но этот энергетический диапазон, лежащий на границе между инфракрасным и радиоизлучением, уже давно вдоль и поперек изучен физиками, и ничего аномального там не обнаружено.
Поэтому исследователи склоняются к тому, что темная энергия — это проявление нового и пока не обнаруженного в лабораторных условиях сверхслабого поля. Эта идея аналогична той, что лежит в основе современной инфляционной космологии. Там тоже сверхбыстрое расширение молодой Вселенной происходит под действием так называемого скалярного поля, только его плотность энергии гораздо выше той, что ответственна за нынешнее неспешное ускорение в расширении Вселенной. Можно предположить, что поле, являющееся носителем темной энергии, осталось как реликт Большого взрыва и долгое время находилось в состоянии «спячки», пока длилось доминирование сначала излучения, а потом темной материи.
Скопление галактик Cl 0024+17 действует как гравитационная линза. Слева: скопление окружено темным кольцом, в котором ослаблен свет далеких галактик. Справа: ближе к ядру скопления видно, как изображения далеких галактик растягиваются в дуги. По таким эффектам можно оценить массу скопления вместе с входящей в него темной материей. Фото: NASA, ESA, M.J. JEE (JOHN HOPKINS UNIVERSITY)
Описывая темную энергию, космологи считают, что ее главное свойство — отрицательное давление. Оно приводит к появлению отталкивающих гравитационных сил, о которых неспециалисты иногда говорят как об антигравитации. В этом утверждении содержатся сразу два парадокса. Разберем их последовательно.
Как давление может быть отрицательным? Давление обычного вещества, как известно, связано с движением молекул. Ударясь о стенку сосуда, молекулы газа передают ей свой импульс, отталкивают ее, давят на нее. Свободные частицы не могут создать отрицательное давление, не могут «тянуть одеяло на себя», но в твердом теле подобное вполне возможно. Неплохой аналогией отрицательного давления темной энергии служит оболочка воздушного шарика. Каждый ее квадратный сантиметр растянут и стремится сжаться. Появись где-нибудь в оболочке разрыв, она немедленно стянулась бы в маленькую резиновую тряпочку. Но пока разрыва нет, отрицательное натяжение равномерно распределено по всей поверхности. Причем если шарик надувать, резина будет становиться тоньше, а запасенная в ее натяжении энергия будет расти. Сходным образом ведет себя при расширении Вселенной плотность вещества и темной энергии.