Автор работы: Пользователь скрыл имя, 29 Ноября 2009 в 16:48, Не определен
Лабораторная работа
При проведении измерений на вход поступает высокочастотный импульс, и уровень опорного постоянного напряжения регулируется до совмещения с максимумом импульса. Это значение регистрируется прибором на постоянном токе, который прокалиброван в единицах мощности. Для калибровки на вход подключается источник непрерывного высокочастотного сигнала, а оконечная нагрузка заменяется измерителем непрерывной мощности. Теперь можно прокалибровать выход диодного детектора путем сравнения с показаниями измерителя непрерывной мощности.
Метод
сравнения с мощностью
Рисунок
12 Блок-схема измерения мощности на
высоких частотах
В цифровом измерительном приборе показания представляются в виде дискретных чисел на отсчетном устройстве. Преимущества такого представления связаны с уменьшением субъективных ошибок при снятии отсчетов, отсутствием ошибок из-за параллакса и ускорением считывания. Цифровые измерительные приборы содержат встроенные электронные схемы, обычно микропроцессоры, которые позволяют подсоединить дополнительные устройства. Например, некоторые приборы снабжены программой, которая позволяет выполнять основные вычисления, в частности линеаризовать показания прибора и выводить их на дисплей.
Некоторые приборы содержат различные диагностические устройства, что уменьшает время устранения отказов. Кроме того, большинство современных стендовых приборов имеет внутренние приспособления для калибровка. Калибровка осуществляется с пульта прибора, а значения параметров хранятся в долговременной памяти. В последующие отсчеты вносятся поправки с учетом этих параметров. Многие цифровые приборы снабжены также шиной интерфейса, например типа IEE 488, и могут благодаря этому работать как части больших измерительных систем.
Параметры типичного универсального цифрового измерительного прибора таковы:
Обычно крупные приборы могут выбирать необходимый диапазон входной величины автоматически. Небольшие приборы, как правило имеют индикатор перегрузки, который напоминает оператору о необходимости переключения диапазона. Приборы высокой точности должны иметь входное сопротивление порядка 10 ГОм, чтобы не нагружать измеряемую схему. Время выполнения операции обычно определяется используемым АЦП и включает время восстановления после перегрузки. Разрешение определяет минимальное напряжение, которое может быть зарегистрировано. Например, разрешение 10 -6 означает, что в диапазоне входных напряжений до 1 В можно зарегистрировать 1 мкВ. Во всех цифровых приборах используются основные схемы преобразователей ЦАП и АЦП. Например, на рис. 13 представлена блок-схема типичного цифрового вольтметра.
Рисунок
13 Блок-схема типичного цифрового вольтметра.
Входное напряжение ослабляется, а затем подается на усилитель с фиксированным коэффициентом усиления. Ослабление меняется вручную или автоматически, как показано на рис. 13, так что на выходе усилителя сигнал всегда находится в заданном диапазоне. Выходной сигнал сравнивается со ступенчатым сигналом от ЦАП, и когда оба сигнала равны, генератор синхроимпульсов блокируется и передает цифровое значение аналогового напряжения сигнала в декадные счетчики. Частота синхроимпульсов составляет около5 кГц. Генератор тактовых импульсов работает значительно медленнее, с частотой около 2Гц, и передает информацию от счетчиков на дисплей, а затем производит сброс в исходное состояние. Эта схема применяется в приборах общего назначения
Примеры цифровых измерителей мощности:
Цифровой измеритель мощности и КСВ DPM-5000
Цифровой измеритель мощности DPM-5000 представляет собой современный комплексный измерительный прибор, обеспечивающий измерения передаваемой и отраженной мощности, измерения КСВ и эффективности приемо-передающего тракта. Прибор выполнен в соответствии с последними достижениями инженерной мысли и дизайна и всех современных требований, предъявляемых к этому классу приборов.
Основные возможности:
Удобное отображение данных:
Прибор обеспечивает отображение данных в «прямом» и «обратном» направлениях. При этом выбор типа представляемых данных осуществляется независимо. Так, например, можно одновременно отображать уровень передаваемой мощности и КСВ в обратном направлении.
Удобным также является установки масштаба отображаемых величин, которые также устанавливаются независимо для каждого направления.
Выносная измерительная головка:
Вторым
несомненным удобством прибора является
наличие выносной измерительной головки,
которая соединяется с прибором кабелем
передачи данных.
В качестве измерительной головки используется описанная нижг головка 5010 с устанавливаемыми двумя измерительными элементами, соответствующими «прямому» и «обратному» направлениям.
Меняя
измерительные элементы, можно настроить
измерительную головку на необходимый
диапазон мощностей и частот.
Выносная измерительная головка 5010B и сенсорные элементы серии DPM
Назначение:
Измерительная головка 5010B предназначена для использования совместно с семейством Site Analyzer или прибором DPM-5000EX. С одной стороны она включается в разрыв фидерного тракта (типы разъёмов выбираются при заказе), с другой стороны 5010B подключается к измерительному прибору (соединительный кабель входит в стандартный комплект поставки). Для измерения мощности сигнала стандарта TETRA, компанией BIRD разработана специальная выносная измерительная головка 5010T.
В
измерительную головку
С помощью анализатора, подключенного к фидерному тракту, строится частотный отклик линии в виде зависимости КСВ от частоты.
Терминальный датчик мощности 5011
Работает в частотном диапазоне от 40МГц до 4ГГц (40МГц - 12ГГц для модели 5011EF). Предназначен для совместной работы с измерителями серии SiteAnalyzer и прибором DPM-5000EX в качестве терминального устройства. Он позволяет точно измерять мощность различных сигналов, как с цифровой, так и с аналоговой модуляцией в диапазоне от 10 мкВт до 10 мВт (-20...+10 дБм). Опциональные фиксированные аттенюаторы (30 дБ, 40 дБ) позволяют увеличить верхний порог измеряемой мощности до 50 Вт.
Входной импеданс 50 Ом. Рабочие температуры от -10° до +50°С. Коннектор N-типа. Типовое значение КСВ 1.33 (36.6 дБ возвратные потери).
Широкополосный измерительный датчик 5012
Широкополосный измерительный датчик 5012 применяется для измерения мощности в разрыве антенно-фидерного тракта. Он может использоваться как совместно с анализаторами семейства SiteAnalyzer или DPM-5000EX, так и подключаться напрямую к персональному компьютеру (ноутбуку). В последнем случае для работы датчика необходимо опциональное программное обеспечение Virtual Power Meter Software.
Датчик
5012 работает в диапазоне частот от
350 МГц до 4ГГц и идеально подходит
для измерения мощности цифровых
сигналов.
Технические характеристики датчика 5012:
5. Индукционные счетчики электрической энергии переменного тока
В настоящее время для измерений широко применяются индукционные счетчики электрической энергии переменного тока.
Индукционные счетчики электрической энергии переменного тока. На рис. 14 в упрощенном виде показано устройство индукционного счетчика. Он состоит из двух электромагнитов 1 и 5, сердечники которых набраны из тонких листов электротехнической стали, алюминиевого диска 3, закрепленного на оси подвижной части, постоянного магнита 4, счетного механизма 2 и других узлов.
Рисунок
14 Устройство индукционного счетчика
и схема его включения в цепь
Рассмотрим более подробно распределение магнитных потоков в индукционном счетчике (рис. 15, а).
Рисунок 15. Индукционный счетчик: а — схема; б — векторная диаграмма
Трехстержневой электромагнит f имеет обмотку из тонкого медного провода с числом витков порядка 8-12 тысяч, включенную параллельно нагрузке. При прохождении по обмотке тока Iv создается магнитный поток Фи, который в ниж ней части среднего сердечника разветвляется на рабочий поток Фр и нерабочий, или вспомогательный, поток Фв. Рабочий поток Фр пронизывает диск 2, индуцируя в нем вихревые токи, и замыкается через стальной противополюс 3. Нерабочий поток Фв не пересекает диск, а замыкается через боковые стержни сердечника 1. Он не принимает непосредственного участия в создании вращающего момента и служит для получения необходимого сдвига фаз между потоком Фр и напряжением сети U. Обмотка сердечника 1 из-за большого числа витков обладает значительной индуктивностью, и ток в ней Iy отстает от напряжения U на угол, близкий к 90°. Нерабочий поток Фв вызывает в сердечнике I незначительные потери, поэтому он отстает от тока Iy на небольшой угол (1-2°), Рабочий поток Фр отстает от этого же тока на существенно больший угол (20-25°), поскольку, кроме потерь в стали, имеются активные потери в алюминиевом дискет Поток Фи является геометрической суммой потоков Фр и Фв.
П-образный электромагнит 4 имеет обмотку с небольшим числом витков, выполненную из медного сравнительно толстого провода и включенную последовательно с нагрузкой цепи Z. По этой обмотке проходит ток нагрузки /, который при ее активно-индуктивном характере (наиболее часто встречающийся характер нагрузки) отстает от напряжения U на угол φ (рис. 15, 6). Ток Iсоздает магнитный поток ФI, который отстает от тока /на угол а (порядка 5-15°) из-за наличия потерь в стали электромагнита. Поток ФI дважды пересекает диск 2 (рис. 15, с), индуцируя в нем вихревые токи, которые, согласно закону электромагнитной индукции, отстают по фазе от потока на угол 90° (сопротивление диска считается чисто активным).
Дальнейший анализ работы индукционного счетчика показывает, что значение вращающего момента зависит от взаимодействия магнитных потоков ФI и Фр и от угла сдвига фаз между ними у и вычисляется согласно выражению
Информация о работе Измерение мощности в цепи однофазного синусоидального тока