Автор работы: Пользователь скрыл имя, 04 Ноября 2013 в 14:19, контрольная работа
Газоразрядные источники света, приборы, в которых электрическая энергия преобразуется в оптическое излучение при прохождении электрического тока через газы и др. вещества (например, ртуть), находящиеся в парообразном состоянии. Исследуя дуговой разряд, рус. учёный В. В. Петров в 1802 обратил внимание на сопровождавшие его световые явления. В 1876 рус. инженером П. Н. Яблочковым была изобретена дуговая угольная лампа переменного тока, положившая начало практическому использованию электрического разряда для освещения. Создание газосветных трубок относится к 1850—1910. В 30-х гг. 20 в. начались интенсивные исследования по применению люминофоров в газосветных трубках
Газоразрядные источники света…………………………………………3
Плазменные источники света…………………………………………….7
Список использованных источников……………………………….…..12
РОССИЙСКОЙ ФЕДЕРАЦИИ
РОСТОВСКИЙ ИНСТИТУТ (ФИЛИАЛ)
Федерального государственного
бюджетного образовательного учреждения
выcшего профессионального образования
"РОССИЙСКИЙ
ГОСУДАРСТВЕННЫЙ ТОРГОВО-
Контрольная работа
По дисциплине: "Теоретические основы прогрессивных технологий."
Вариант №: 18.
Тема: Газоразрядные и плазменные источники света.
Выполнил: Тумбучкина Ирина Николаевна
Факультет: товароведение и экспертиза товаров
Специальность: (в сфере производства и обращения непродовольственных товаров)
Курс: 5
Группа: ТЭТ
Номер зачетки: 08014
Проверил: Коробкова В.Г. доцент
Ростов-на-Дону 2012 - 2013
СОДЕРЖАНИЕ
Газоразрядные источники света…………………………………………3
Плазменные источники света…………………………………………….7
Список использованных источников……………………………….…..12
Газоразрядные источники света
Газоразрядные источники света, приборы, в которых электрическая энергия преобразуется в оптическое излучение при прохождении электрического тока через газы и др. вещества (например, ртуть), находящиеся в парообразном состоянии. Исследуя дуговой разряд, рус. учёный В. В. Петров в 1802 обратил внимание на сопровождавшие его световые явления. В 1876 рус. инженером П. Н. Яблочковым была изобретена дуговая угольная лампа переменного тока, положившая начало практическому использованию электрического разряда для освещения. Создание газосветных трубок относится к 1850—1910. В 30-х гг. 20 в. начались интенсивные исследования по применению люминофоров в газосветных трубках. Исследованием, разработкой и производством Г. и. с. в СССР начиная с 30-х гг. занималась группа учёных и инженеров Физического института АН СССР, Московского электролампового завода, Всесоюзного электротехнического института. Первые образцы ртутных ламп были изготовлены в СССР в 1927, газосветных ламп — в 1928, натриевых ламп — в 1935. Люминесцентные лампы в СССР были разработаны в 1938 группой учёных и инженеров под руководством академика С. И. Вавилова.
Г. и. с. представляет собой стеклянную, керамическую или металлическую (с прозрачным выходным окном) оболочку цилиндрической, сферической или иной формы, содержащую газ, иногда некоторое количество металла или др. вещества (например, галоидной соли) с достаточно высокой упругостью пара. В оболочку герметично вмонтированы (например, впаяны) электроды, между которыми происходит разряд. Существуют Г. и. с. с электродами, работающими в открытой атмосфере или протоке газа, например угольная дуга.
Различают газосветные лампы, в которых излучение создаётся возбуждёнными атомами, молекулами, рекомбинирующими ионами и электронами; люминесцентные лампы, в которых источником излучения являются люминофоры, возбуждаемые излучением газового разряда; электродосветные лампы, в которых излучение создаётся электродами, разогретыми разрядом.
В большинстве Г. и. с. используется излучение положительного столба дугового разряда (реже тлеющего разряда, например в газосветных трубках), в импульсных лампах — искровой разряд, переходящий в дуговой. Существуют лампы дугового разряда с низким [от 0,133 н/м2(10-3 мм рт. ст.)], например натриевая лампа низкого давления (рис., a), высоким (от 0,2 до 15 ат,1 ат= 98066,5 н/м2) и сверхвысоким (от 20 до 100 ат и более, например ксеноновые газоразрядные лампы) давлением. На рисунке 1 изображены газоразрядные источники света.
Рис. 1. Газоразрядные источники света: а — натриевая лампа низкого давления; б — люминесцентная лампа; в — ртутная лампа высокого давления с исправленной цветностью; г — ксеноновая лампа сверхвысокого давления; д — натриевая лампа высокого давления с колбой из поликристаллической окиси алюминия.
Г. и. с. применяют для общего освещения, облучения, сигнализации и др. целей. В Г. и. с. для общего освещения важны высокая световая отдача, приемлемый цвет, простота и надёжность в эксплуатации. Наиболее массовыми Г. и. с. для общего освещения являются люминесцентные лампы (рис., б). Световая отдача люминесцентных ламп достигает 80 лм/вт, а срок службы до 10 и более тыс. ч. Для освещения загородных автострад применяются натриевые лампы низкого давления со световой отдачей до 140 лм/вт, а для освещения улиц — ртутные лампы высокого давления с исправленной цветностью (рис., в). Для специальных целей важны такие характеристики Г. и. с., как яркость и цвет (например, ксеноновые лампы сверхвысокого давления для киноаппаратуры,(рис., г), спектральный состав и мощность (ртутно- таллиевые лампы погружного типа для промышленной фотохимии), мощность и идентичность спектрального состава излучения солнечному (ксеноновые лампы в металлической оболочке для имитаторов солнечного излучения), амплитудные и временные характеристики излучения (импульсные лампы для скоростной фотографии, стробоскопии и т. д.).
В связи с разработкой новых высокотемпературных и химически стойких материалов для оболочек ламп и открытием технологического приёма введения в лампу излучающих элементов в виде легколетучих соединений появились новые перспективы развития и применения Г. и. с. Например, ртутная лампа с добавкой иодидов таллия, натрия и индия обладает световой отдачей до 80—95 лм/вт и хорошей цветопередачей. В натриевой лампе высокого давления (рис., д), создание которой стало возможным благодаря применению оболочки из высокотемпературной керамики на основе окиси алюминия, световая отдача достигает 100—120 лм/вт.
Газоразрядный источник освещения – это электролампа, в которой свет продуцируется в результате электрического разряда в газе или парах металла.
Газоразрядные лампы обладают рядом несомненных достоинств. Это, во-первых, высокая светоотдача, в пять-десять раз превышающая аналогичные показатели обычных лампочек. Во-вторых, газоразрядные лампы отличаются огромным ресурсом. И, наконец, огромное разнообразие размеров и конфигураций позволяет купить газоразрядные лампы для любых целей.
В российском климате газоразрядные источники света чаще всего используются для наружного освещения, так как меньше, чем лампы других типов, зависят от внешних условий. Практика показывает, что купить газоразрядные лампы проще и дешевле, чем обеспечить условия для нормальной работы любого другого источника света.
Главным недостатком этих источников света являются заметные глазу пульсации светового потока, возникающие при питании ламп от сети переменного тока частотой 50 Гц.
За световыми источниками этого типа окончательно закрепилось название "лампы дневного света". Дальнейшее совершенствование газоразрядных ламп пошло по пути снижения потребляемой мощности и повышения безопасности эксплуатации.
Современные газоразрядные лампы сохранили только два недостатка своих предшественниц. Основным минусом является сложность установки и подключения. Лампы этого типа при включении требуют гораздо более высокого напряжения, чем при постоянной работе, поэтому приходится использовать устройства, ограничивающие пусковой ток, что увеличивает стоимость светильников. Второй минус для потребителя – выражается в том, что повторно включить лампы можно только через определенный промежуток времени после выключения. Вызвано это тем, что нормальный режим работы таких ламп устанавливается не сразу. Несоблюдение этого правила существенно сокращает ресурс лампы.
Плазменные источники света
Первым электрическим источником света, получившим широкое распространение, были лампы накаливания. Позже принцип их работы был усовершенствован, в результате чего появились галогенные лампы накаливания (ГЛН). При всех недостатках у ГЛН есть одно важное преимущество — спектр их излучения непрерывен и близок к солнечному.
Эволюция источников света
привела к появлению
Свет, излучаемый МГЛ, многими людьми признается «неестественным». Цвет предметов, освещенных такими лампами, может быть сильно искажен. Попробуйте, например, почитать журнал с множеством цветных фотографий под освещением МГЛ, а затем выйдите с ним на улицу под солнечный свет, и вы сразу заметите, что под МГЛ некоторые оттенки выглядят иначе. Причина заключается в том, что спектр МГЛ не является непрерывным, как у Солнца или ГЛН, а состоит из отдельных линий. Соотношение интенсивностей этих составляющих выбрано таким образом, что свет от МГЛ кажется нам белым, но при отражении света с подобным спектром от предметов возможны искажения цвета. В результате электрического разряда в газе возникает плазма, так что все газоразрядные источники света можно отнести к плазменным. Решением проблемы является выбор серы в качестве вещества для получения плазмы и последующей эмиссии света. Так как сера в состоянии плазмы излучает свет в процессе молекулярной, а не атомной эмиссии, спектр излучения остается непрерывным во всем видимом диапазоне (о причинах подробнее - см. врезку). При этом 73% общей эмиссии излучается в видимом диапазоне, около 20% в инфракрасном и менее 1% в ультрафиолетовом. Но использовать для серы традиционные электроды не представляется возможным, поскольку раскаленные пары серы мгновенно вступают в реакцию с металлом и разрушают электрод. Здесь требуются новые подходы, а, именно, возбуждение плазмы СВЧ-излучением. Немного истории
«Плазменной лампой» часто
называют бытовой светильник в виде
шара, в котором возникают
Плазменные светильники на основе серы были изобретены в 1990 году американскими учеными Майклом Ури (Michael Ury) и Чарльзом Вудом (Charles Wood). Разработка получила поддержку Департамента энергетики США, и уже в 1992 году был продемонстрирован первый реально работающий образец плазменного светильника на основе серы.
Современная история плазменных светильников начинается в 1994 году с разработок компании Fusion Lighting. Со временем к разработкам плазменных ламп подключились компании Ceravision и Luxim. К сожалению, первые опыты оказались неудачными с точки зрения маркетинга. Компания Fusion Lighting свернула производство плазменных ламп в 1998 году, а в 2002 году вообще прекратила свое существование. Ее патенты перешли в собственности компании LG. Параллельно в 90-х годах исследования по плазменным светильникам велись в Китайской инженерно-физической академии. Результаты были реализованы на практике компанией Ningbo Youhe New Lighting Source, которая в 2001 году начала массовый выпуск «серных» светильников. В настоящее время деятельность этой компании также свернута.
И только выход на рынок плазменных светильников компании LG, имеющий большой задел в области СВЧ-технологий, изменил ситуацию. Стремление компании LG постоянно находиться на острие технологий привело к созданию в компании специализированного подразделения по разработке самых передовых устройств освещения. И одним из приоритетных направлений данного подразделения в настоящий момент являются именно плазменные светильники как наиболее перспективные и технологически совершенные устройства освещения. Серийное производство плазменных светильников было запущено в 2010 году, и в настоящее время компания LG является единственным в мире массовым производителем такой продукции.
В основе работы плазменного светильника лежит принцип микроволновой ионизации газов. Микроволновое излучение, испускаемое магнетроном (впрочем, так как это уже не микроволновая печь, а светильник, в LG придумали новый термин — «лайтрон»), возбуждает пары серы в аргоне внутри колбы лампы. При достижении определенного значения рабочей температуры высокоионизированный газ переходит в состояние плазмы, которое начинает постоянно испускать свет.
Излучатель представляет собой запаянную стеклянную колбу диаметром 30 мм, в которой находятся аргон и несколько миллиграмм серы. При необходимости достижения определенного спектра внутрь колбы могут добавляться и другие вещества. Колба помещена в микроволновый резонатор, в который через волновод подается СВЧ-излучение от магнетрона. Резонатор представляет собой «корзину» из мелкоячеистой сетки. Свет через нее проходит, а СВЧ-излучение — нет. При разогреве аргона давление в колбе может достигать 5 атм. Важным моментом является необходимость охлаждения колбы, так как при слишком высоких температурах сера теряет полиморфные свойства, из-за чего спектр излучения может стать линейчатым. Колба вращается для равномерного нагрева газа. Впрочем, есть вероятность, что в будущем эта проблема будет принципиально решена, например, путем использования микроволн с круговой поляризацией, которые будут сами заставлять плазму вращаться.
Все компоненты, необходимые для производства подобных ламп, уже давно освоены компанией LG в массовом производстве. Например, применяемый в устройстве магнетрон с рабочей частотой 2,45 гигагерца производится по уже существующей технологии магнетрона для микроволновых печей LG, что делает и саму технологию, и производимую по ней продукцию в конечном итоге доступной и конкурентоспособной по цене.
В основном осветительные приборы данного типа предназначены для общественных, торговых и спортивных зданий и сооружений, конференц-залов, промышленных и складских помещений, теплиц. Главным образом, это помещения с высотой потолков от 6 м, для которых сложно реализовать освещение иными способами.
Информация о работе Газоразрядные и плазменные источники света