Автор работы: Пользователь скрыл имя, 17 Февраля 2011 в 23:15, реферат
Ознакомившись под руководством профессора Местмена с основами учения Коперника, в ту пору ещё не получившего всеобщего признания, Кеплер стал горячим приверженцем новой теории и с таким жаром отстаивал её на университетских диспутах, что навлёк на себя неудовольствие университетского начальства и до окончания курса был отправлен в протестантскую гимназию Граца. Позднее, в пражский период, работая над “Новой астрономией”, Кеплер порвал с тысячелетней традицией и открыл знаменитый второй закон движения планет (“Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце”). Это открытие потребовало от Кеплера огромной интеллектуальной смелости, ибо речь шла о разрыве с традицией, освященнной именами великих астрономов Птоломея и Коперника.
Свершиться замыслам было суждено не скоро: первый вариант “Гармонии мира” был закончен лишь 27 мая 1618 г. И хотя писал “Гармонию” не восторженный преподаватель протестантской гимназии в Граце, а зрелый учёный муж, “математик его императорского величества” Рудольфа II, открыватель двух первых законов движения планет, автор “Новой астрономии”, “Диоптики”, “Дополнений к Вителлию”, “Стереометрии винных бочек”, увлеченность его идеей гармонии мира осталась прежней.
Если в “Тайне мироздания” мы ощущаем юношескую непосредственность автора, если в “Новой астрономии” нас изумляет его тонкая интуиция, позволяющая ему находить верную дорогу сквозь лабиринт наблюдений, и бескомпромиссное следование наблюдательным данным Тихо Браге, то в “Гармонии” перед нами предстаёт Кеплер-мыслитель, занятый поисками ключа к строению Вселенной, - сверхпринципа, позволяющего единым взглядом охватить всё богатство явлений, обосновать общность всех членов Солнечной системы.
Высокая задача требовала особой тщательности изложения, и Кеплер решает следовать непогрешимому (в те времена) идеалу математической строгости -“Началам” Евклида.
Кеплер,
считавший геометрию “
В
своих исследованиях
Важнейшим свойством геометрических фигур Кеплер считает рациональность отношений длин их элементов и возможность построения их с помощью циркуля и линейки. Это свойство кладется в основу разделения многоугольников на представимые и непредставимые. Кеплер утверждает, что “речь идет здесь об очень важных вещах, ибо в этом и состоит причина, по которой Бог не использовал семиугольник и другие фигуры этого же рода для украшения мира в отличие от ... представимых фигур”.
Но представимых фигур бесконечно много, и не существует способа, позволяющего однозначно выбрать конечное число таких фигур, чтобы с их помощью “обосновать” гармонические пропорции.
И Кеплер пытается различать фигуры по новому свойству, которое он называет конгруэнцией (вторая книга “Гармонии мира” так и называется “Конгруэнция гармонических фигур”). Конгруэнцией Кеплер называет заполнение плоскости геометрическими фигурами или построение из плоских фигур многогранников. Рассматривая плоские конгруэнции, Кеплер одним из первых решает задачу о разбиении плоскости как на равные (конгруэнтные) фигуры, так и на фигуры различных форм и размеров. При изучении пространственных конгруэнций Кеплер открывает два звездчатых многогранника.Число конгруэнтных фигур оказалось конечным, и все они оказались представимыми.
Теперь Кеплеру предстояло извлечь из свойственных этим фигурам числовых отношений такие, которые можно было бы принять за основу гармонии. Поиском гармонических соотношений посвящена третья книга “Гармонии мира”, которая называется “Происхождение гармонических пропорций, а также природа и различие музыкальных интервалов”.
Кеплеру предстояло решить необычайно сложную задачу: не только указать основные интервалы, из которых можно построить весь звукоряд, но и вывести из их свойств геометрию представимых фигур. Проделав колоссальную вычислительную работу и по существу создав свою теорию музыки, Кеплер получает семь основных гармонических интервалов: октаву (с отношением частот 1:2), увеличенную сексту (3:5), малую сексту (5:8), чистую квинту (2:3), чистую кварту (3:4), большую терцию (4:5) и малую терцию (5:6) - и выводит из них весь звукоряд.
“Эти
семь делений струны, - поясняет Кеплер,
- я нашел, сначала руководствуясь
слухом, в числе, равном числу гармоний
в пределах одной октавы, и лишь
затем не без труда вывел причины
отдельных делений и всей их совокупности
из глубочайших оснований
Музыкальная гармония дала Кеплеру удобную терминологию. Однако, сколь ни важны музыкальные гармонии, они, по мнению Кеплера, представляют собой не более чем материализацию абстрактных отношений, которые и являются истинно гармоническими.
Носителями “чистых” гармоний служат идеальная окружность и ее разбиения. Рассмотрению чистых гармоний посвящена четвертая книга “Гармонии мира”, которая называется “Гармоническая конфигурация звездных лучей и ее влияние на погоду и другие явления природы”.
В этой книге Кеплер подробно излагает собственную астрологию, которая существенно отличается от общепринятой. Согласно Кеплеру, основное свойство индивидуальной души, которое он называет формирующей силой, или формирующей матрицей, заключено в ее способности инстинктивно реагировать на некоторые гармонические пропорции, соответствующие рациональным разбиениям окружности. В музыке это свойство души проявляется в ее способности воспринимать созвучия определенных музыкальных интервалов. Точно также душа обладает способностью реагировать на гармонические пропорции углов, образуемых световыми лучами, приходящими от звезд на Землю.
По мнению Кеплера, расположение светил не имеет для астрологии ни малейшего значения. Все влияние надлежит приписать только лучам света, испускаемым звездами. Душа с помощью Инстинкта, не апеллируя разуму, знает о гармонических пропорциях, ибо, имея форму окружности, представляет собой подобие Бога, в котором эти пропорции и вытекающие из них геометрические истины пребывают испокон веков. Зная это, душа попадает под влияние внешних форм тех конфигураций, которые образуют световые лучи, и запечатлевает их в памяти с самого рождения. Сам Кеплер говорит по этому поводу следующее: “Я обращаюсь к астрологам. Если говорить о моем мнении, то я считаю, что в небесах нет светил, приносящих несчастье, еще и потому, что человеческая натура движется по Земле, которая сама подвержена влиянию излучений планет. Точно так же слух, наделенный способностью различать созвучия, до такой степени подвержен влиянию музыки, что она побуждает того, кто ее слышит, пуститься в пляс”.
По Кеплеру, душа из-за присущей ей форме окружности обладает врожденным представлением о Зодиаке. На судьбы людей влияют лучи, испускаемые не неподвижными звездами, а планетами. Вопрос о том, как распределяется двенадцать знаков Зодиака среди семи планет, Кеплер считает чистейшим вздором, но основной принцип астрологии полагает обоснованным. Особую роль играют гармонические углы между лучами, называемые “аспектами”.
В первой главе четвертой (“астрологической”) книги “Гармонии мира” Кеплер излагает свое понимание гармонических аспектов: “Необходимо отличать чувственные и аналогичные им гармонии от чистых гармоний, лишенных всего чувственного. Первые гармонии многочисленны ... и имеют разнообразные носители. Чистые же гармонии, лишенные чувственных носителей, всегда одинаковы. Например, тот тип гармонии, который возникает из пропорции 1:2, всегда один и тот же. Если же он выражен в звуках, то называется октавой, если же в углах между лучами, - противостоянием. При этом в музыкальной системе октава может быть высокой или низкой ... гармонией человеческих голосов или звуков, издаваемых музыкальными инструментами”.
Другой реализацией гармоний служат так называемые действенные конфигурации - углы между лучами от двух планет, обладающие особым свойством возбуждать одушевленные существа в силу их подлунной природы и ограниченных возможностей так, что в момент наступления такой конфигурации эти существа развивают повышенную активность.
Углы между лучами (“аспекты”), приходящими на Землю от светил, по мнению Кеплера, способны оказывать влияние на погоду и души людей, воспринимающих их как чуткие резонаторы. “Действенных аспектов” восемь (в долях окружности: соединение (1:1), секстиль (1:6), квадратура (1:4), тритон (1:3), противостояние (1:2), квинтиль (1:5), триоктиль (3:8) и биквинтиль (2:5).
Главной
реализации гармоний - в движении планет
- посвящена пятая, заключительная книга
“Гармонии мира” - “Совершенная гармония
в небесных движениях и связанное
с ней возникновение
В предисловии к ней звучит неподдельная радость человека, достигшего заветной цели: “То, о чем я догадывался 25 лет назад еще до открытия пяти правильных тел между небесными орбитами, то, в чем я был уверен еще до прочтения рукописи Птоломея о гармонии, то, что я обещал своим друзьям, выбрав заглавие этой книги еще до того, как сам предмет стал мне ясен, то, что 16 лет назад я провозгласил как цель исследования в одной из своих работ 5, то, что побудило меня посвятить лучшую часть жизни астрономическим изысканиям, найти Тихо Браге и избрать Прагу местом жительства, ... я, наконец, вынес на суд.
...
Ныне, после того как 18 месяцев
назад впервые забрезжил
Две фундаментальные идеи лежат в основе кеплеровской картины мира, два принципа: геометрический (число планет и расстояния между орбитами определяются правильными платоновыми телами) и гармонический, управляющий эксцентриситетами и периодами обращения. Геометрический принцип подробно изложен в “Тайне мироздания” и первая глава пятой книги следует в основном этому юношескому сочинению Кеплера.
Вторая глава “О связи гармонических пропорций с пятью правильными телами” призвана показать, что оба принципа не исключают, а скорее дополняют друг друга. В ней, в частности, говорится: “Связь эта весьма разнообразна, однако в основном бывает четырех типов. Ее можно усматривать либо во внешних формах правильных тел, либо в пропорциях, возникающих при построении их граней, которые также гармоничны, либо в пропорциях уже построенных тел рассматриваемых как порознь, так и вместе, либо, наконец, в пропорциях, которые точно или приближенно совпадают с пропорциями вписанных и описанных сфер”.
Хотя сами пропорции уже были найдены, их носитель в движениях планет по-прежнему оставался неизвестным. Прежде чем приступить к его поискам, Кеплер считает необходимым в 13 тезисах изложить “сведения, необходимые для рассмотрения небесных гармоний”, дав по существу сжатое изложение всей астрономии того времени.
Знаменитый третий закон движения планет сформулирован в восьмом тезисе. На этот раз читатель остается в полном неведении относительно того, каким был путь, приведший Кеплера к открытию. Кеплер ограничивается лишь следующим сообщением: “Она (истинная пропорция между периодами обращений и размерами орбит) пришла мне в голову 8 марта сего (1618) года, когда мне потребовалось уточнить некоторые даты, однако рука моя не была удачливой, и я отверг свою догадку как ошибочную. Наконец, 15 мая та же мысль снова пришла мне в голову и со второй попытки рассеяла тьму моего духа. Между моей семнадцатилетней работой над наблюдениями Тихо и моими нынешними размышлениями возникло при этом столь полное согласие, что я было подумал, будто все это мне снится и я принимаю желаемое за действительное. Однако совершенно достоверно и точно установлено, что пропорция между периодами обращения любых двух планет составляет ровно полуторную степень пропорции их средних расстояний”.
Пользуясь новым законом, Кеплер в тезисах 11, 12 и 13 находит зависимость между расстояниями от Солнца до планет в афелии и перигелии и их наибольшей и наименьшей скоростью, а также определяет по экстремальным скоростям среднюю.