Асинхронный электродвигатель

Автор работы: Пользователь скрыл имя, 04 Ноября 2009 в 13:00, Не определен

Описание работы

Реферат

Файлы: 1 файл

SUEPKURS.DOC

— 141.50 Кб (Скачать файл)

    Rр - активное сопротивление реактора;

    Rп - активное сопротивление тиристорного преобразователя.

    Активное сопротивление трансформатора рассчитывается по формуле:

    где Uка - активная составляющая напряжения короткого замыкания;

          Uка=UкЧ0,31=4,5Ч0,31=1,395 %

          U, I - напряжение и ток первичной обмотки трансформатора;

          k - коэффициент трансформации;

          k=U1/U2=380/202=1,881;

    где U1,U2 - напряжения первичной и вторичной обмоток трансформатора;

     

      I1ф=I2ф/k=262/1,881=216,9;

Находим активное сопротивление трансформатора:

Реактивное сопротивление трансформатора рассчитывается по формуле:

где Uкр - реактивная составляющая напряжения короткого замыкания;

       Uкр=UкЧ0,95=4,5Ч0,95=4,275.

Находим реактивное сопротивление трансформатора:

Активное сопротивление тиристорного преобразователя:

где m - число тиристоров. В данном случае m=6.

    Находим активное сопротивление якорной цепи:

Rяц=0,0369+2.0,004+0,0075+0,0117=0,0604, Ом.

Суммарная индуктивность якорной цепи:

Lяц= Lтр+ Lр+ Lдв,

где Lтр - индуктивность обмоток трансформатора, находится:

   

             где f1 - частота питающей сети - 50 Гц;

       Lр - индуктивность сглаживающего реактора;

       Lдв - индуктивность якоря двигателя, находится:

             где p - число пар полюсов двигателя;

                    p=2.

  Найдем суммарную индуктивность якорной цепи:

Lяц=0,039Ч10-3+3,25.10-3+1,64Ч10-3=4,929Ч10-3, Гн.

   Электромагнитная постоянная времени якоря:

Жесткость естественной характеристики электропривода:

Механическая постоянная времени электропривода:

Максимальный ток якорной цепи двигателя (ток упора):

Iя max=2,5ЧIн=2,5Ч385,2=963,  А.

      Определим коэффициенты передачи элементов электропривода. При этом будем считать, что рабочие области передаточных характеристик линейны, а сигнал управления, соответствующий максимальному значению управляемого параметра равен 10 В, т. е. максимальному уровню напряжения системы управления.

      Коэффициент передачи тиристорного преобразователя:

      

 

       где    Udном - номинальное напряжение на выходе тиристорного преобразователя;

                   UСИФУmax - максимальное входное напряжение СИФУ.

      Коэффициент передачи обратной связи по скорости:

      

 

          где  w0 - скорость холостого хода двигателя (принимаем её как максимальную).

      Коэффициент передачи обратной связи по току:

      

      Коэффициент передачи датчика напряжения:

      

      Статизм системы при М=Мном:

      

 

           где  k - суммарный коэффициент усиления элементов электропривода до двигателя;

      k=kрсЧkртЧkтп/kФ=8,57Ч1,61Ч23/1,965=161,5.

      Uз - напряжение задания при максимальной скорости.

      Uз=10 В.

      Определим статизм системы:

      

 

         6. Синтез регуляторов.

      Регулятор тока якоря получает на вход сигнал задания uзт с выхода регулятора скорости и сигнал обратной связи uдт с выхода датчика тока. На выходе он формирует напряжение управления uу в СИФУ ТП, определяющее угол управления тиристоров a. Параметры регулятора выбираются по соотношениям:

      R2C=Tя;       R1C=Tи;    

      Сигнал обратной связи по току снимается с шунта, установленного в главной цепи; датчик тока осуществляет гальваническое разделение цепей управления  от главных цепей и усилению по напряжению. Возможно также использование датчика тока на основе трансформаторов тока, установленных на стороне переменного тока ТП, и ключей, изменяющих полярность обратной связи при переключении выпрямительных мостов.

      На регулятор тока возлагаются также другие функции: ограничение скорости нарастания тока di/dt, улучшение динамики контура тока в зоне прерывистого тока, компенсация влияния ЭДС двигателя на характеристики контура, обеспечение режима стоянки электродвигателя, управление переключением выпрямительных мостов реверсивного ТП.

      В системах подчиненного регулирования выходной сигнал регулятора скорости является сигналом задания тока uзт для регулятора тока. На регулятор скорости и связанные с ним узлы возлагаются дополнительные задачи: ограничение сигнала uзт допустимым значением, которое может зависеть от значения потока двигателя Ф, ограничение скорости изменения тока di/dt, формирование требуемой жесткости механических характеристик ЭП, прием сигналов задания скорости двигателя wдв, обеспечение изменения wдв с определенным ускорением и др.

      В КТЭУ предусмотрена возможность использования двух задатчиков скорости: сельсинового командоаппарата UR и ступенчатого задатчика AQ на 3 ступени “вперед” или “назад”. Выходы этих задатчиков соединяются вместе и подаются на вход задатчика интенсивности. В каждый момент задает скорость тот задатчик, который выбран (разрешен) внешним сигналом. Имеется вход для общего запрета задания, а также конечные ограничения для хода “вперед” или “назад”. При нуле нуль-орган AU выдает сигнал, разрешающий сборку схемы. 
 
 
 

        7. Выбор защит и их уставок.

      Выключатели автоматические АК-63 предназначены для отключения при перегрузках и коротких замыканиях электрических цепей напряжением постоянного тока до 440 В (однополюсные до 240 В) или переменного тока частотой 50-60 Гц до 500 В, оперативных включений и отключений (до 30 в час) этих цепей.

      Механическое и коммутационное износостойкость свободных контактов выключателей – 40000 циклов. Свободные контакты включателей допукают нагрузку в продолжительном режиме током 2,5 А. Предельный ток включения 10 А. Предельный ток отключения:

      постоянный при напряжении 220 В и постоянной времени цепи 0,01 с – 0,25 А;

      переменный  частотой 50 Гц при коэффициенте мощности 0,4: при напряжении127 В будет 2,5 А, при напряжении 220 В – 1,6 А, при напряжении 380 В – 1,0 А, при напряжении 440 В - 0,5 А.

       Реле электромагнитные РЭВ800 применяют в схемах автоматического управления в качестве электромагнитных реле времени, контроля тока, контроля напряжения и промежуточных, они пригодны для работы прерывесто-продолжительном и повторно-кратковременном режимах.

      Реле контроля напряжения и промежуточные РЭВ821, РЭВ822, РЭВ825, РЭВ826 изготовляют с втягивающими катушками на номинальные напряжения 24, 48, 110 и 220 В. Масса реле не более 5 кг.

      Реле минимального тока РЭВ830 изготовляют с втягивающими катушками на номинальные токи 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 63; 100; 160; 250; 320; 400 и 630 А. Конструкция реле допускает применение токовых катушек на большие значения номинальных  при сохранении номинального значения МДС, равного 2400 А. Реле регулируют на ток втягивания в пределах 30-80 %. Коэффициент возвратареле не номинируется и состовляет ориентировочно 0,3. Реле имеет один замыкающий, один размыкающий контакты. По условиям динамической устойчивости втягивающая катушка тока обеспечивает протекание 10-кратного по отношению к номинальному тока в течение 0,5 с. Номинальный ток контактов 10 А. 

            Контакторы однополюсные постоянного тока типа КП207 предназначенны для коммутирования силовых электрических цепей генераторов и электродвигателей постоянного тока при номинальном напряжении 600 В. Они исполняются с замыкающими главными контактами. Контактор КП207 отличается от соответствующего исполнения контактора КП7 наличием отключающих пружин. Номинальный ток контактора КП207У3 2500 А, номинальное напряжение 600 В. Контакторы расчитанны на продолжительный режим работы при номинальном токе. Предельно допустимое число включений в час – 30. Собственное время срабатывания контактора КП207 (с учетом реле форсировки) замыкания – 0,25 с, размыкания – 0,05-0,08 с. Контакторы могут изготовляться со встроенным максимальным реле, имеющим  один замыкающий и один размыкающий контакты. Установки тока срабатывания максимального реле контактора КП207У3 1250, 1600, 2500, 3750, 5000 А. Контакторы имеют три замыкающих и три размыкающих вспомогательных контакта, из которых один размыкающий контакт задействован в цепи форсировки катушки. Для расширения диапазона регулирования и повышения точности используются замкнутые системы регулирования. Идея замкнутых систем регулирования сводится к тому, что в системе автоматически компенсируется воздействие возмущающих факторов и угловая скорость или момент двигателя могут с большей точностью поддерживаться на требуемом уровне.

Информация о работе Асинхронный электродвигатель