Автор работы: Пользователь скрыл имя, 20 Октября 2009 в 15:50, Не определен
Доклад
.
Временная стоимость
денег
2.1. Основы финансовых
вычислений
Одним из важнейших свойств денежных потоков является их распределенность во времени. При анализе относительно краткосрочных периодов (до 1 года) в условиях стабильной экономики данное свойство оказывает относительно незначительное влияние, которым часто пренебрегают. Определяя годовой объем реализации по предприятию, просто складывают суммы выручки за каждый из месяцев отчетного года. Аналогично поступают со всеми остальными денежными потоками, что позволяет оперировать их итоговыми значениями. Однако в случае более длительных периодов или в условиях сильной инфляции возникает серьезная проблема обеспечения сопоставимости данных. Одна и та же номинальная сумма денег, полученная предприятием с интервалом в 1 год и более, в таких условиях будет иметь для него неодинаковую ценность. Очевидно, что 1 млн. рублей в начале 1992 года был значительно весомее миллиона в 1993 году и позже. Как правило, в таких случаях производят корректировку отчетных данных с учетом инфляции. Но проблема не сводится только к учету инфляции. Одним из основополагающих принципов финансового менеджмента является признание временной ценности денег, то есть зависимости их реальной стоимости от величины промежутка времени, остающегося до их получения или расходования. В экономической теории данное свойство называется положительным временным предпочтением.
Наряду
с инфляционным обесцениванием денег
существует еще как минимум три
важнейшие причины данного
Количественной мерой величины этого возмещения является процентная ставка. С ее помощью может быть определена как будущая стоимость «сегодняшних» денег (например, если их собираются ссудить), так и настоящая (современная, текущая или приведенная) стоимость «завтрашних» денег – например, тех, которыми обещают расплатиться через год после поставки товаров или оказания услуг. В первом случае говорят об операции наращения, поэтому будущую стоимость денег часто называют наращенной. Во втором случае выполняется дисконтирование, или приведение будущей стоимости к ее современной величине (текущему моменту) – отсюда термин дисконтированная, приведенная, или текущая, стоимость. Операции наращения денег по процентной ставке более просты и понятны, так как с ними приходится сталкиваться довольно часто, беря или давая деньги взаймы. Однако для финансового менеджмента значительно более важное значение имеет дисконтирование денежных потоков, приведение их будущей стоимости к нынешнему моменту времени для обеспечения сопоставимости величины распределенных по времени платежей. В принципе, дисконтирование – это наращение «наоборот», однако для финансовых расчетов важны детали, поэтому необходимо более подробно рассмотреть как прямую, так и обратную задачу процентных вычислений. Прежде чем рассматривать их применительно к денежным потокам, следует усвоить наиболее элементарные операции с единичными суммами (разовыми платежами).
Процентная
ставка показывает степень интенсивности
изменения стоимости денег во
времени. Абсолютная величина этого
изменения называется процентом,
измеряется в денежных единицах (например,
рублях) и обозначается I. Если обозначить
будущую сумму S, а современную (или
первоначальную) P, то I = S
– P. Процентная ставка i является
относительной величиной, измеряется
в десятичных дробях или процентах и определяется
делением процентов на первоначальную
сумму:
Можно заметить,
что формула расчета процентной
ставки идентична расчету
Кроме процентной
существует учетная
ставка d (другое название – ставка
дисконта), величина которой определяется
по формуле:
где D – сумма дисконта.
Сравнивая формулы (2) и (3) можно заметить, что сумма процентов I и величина дисконта D определяются одинаковым образом – как разница между будущей и современной стоимостями. Однако смысл, вкладываемый в эти термины, неодинаков. Если в первом случае речь идет о приросте текущей стоимости, своего рода «наценке», то во втором определяется снижение будущей стоимости, «скидка» с ее величины (diskont в переводе с немецкого означает «скидка»). Неудивительно, что основной областью применения учетной ставки является дисконтирование – процесс, обратный по отношению к начислению процентов. Тем не менее иногда она используется и для наращения. В этом случае говорят об антисипативных процентах.
При помощи рассмотренных выше ставок могут начисляться как простые, так и сложные проценты. При начислении простых процентов наращение первоначальной суммы происходит в арифметической прогрессии, а при начислении сложных процентов – в геометрической. Вначале более подробно рассмотрим операции с простыми процентами.
Начисление простых декурсивных и антисипативных процентов производится по различным формулам:
декурсивные проценты:
антисипативные проценты:
где n – продолжительность ссуды, измеренная в годах.
Для упрощения вычислений вторые сомножители в формулах (3) и (4) называются множителями наращения простых процентов: (1 + ni) – множитель наращения декурсивных процентов; 1 / (1 – nd) – множитель наращения антисипативных процентов.
Например, ссуда в размере 1 млн. рублей выдается сроком на 0,5 года под 30% годовых. В случае декурсивных процентов наращенная сумма (Si) будет равна 1,15 млн. рублей (1 · (1 + 0,5 · 0,3), а сумма начисленных процентов (I) – 0,15 млн. рублей (1,15 – 1). Если же начислять проценты по антисипативному методу, то наращенная величина (Sd) составит 1,176 млн. рублей (1 · (1 / (1 – 0,5 · 0,3), а сумма процентов (D) 0,176 млн. рублей. Наращение по антисипативному методу всегда происходит более быстрыми темпами, чем при использовании процентной ставки. Поэтому банки используют этот метод для начисления процентов по выдаваемым ими ссудам в периоды высокой инфляции. Однако у него есть существенный недостаток: как видно из формулы (4), при n = 1 / d знаменатель дроби обращается в нуль и выражение теряет смысл.
Вообще
начисление процентов с использованием
ставки, предназначенной для выполнения
прямо противоположной операции
– дисконтирования, имеет оттенок
некой «неестественности» и иногда
порождает неразбериху (аналогичную
той, которая может возникнуть у
розничного торговца, если он перепутает
правила определения скидок и
наценок на свои товары). С позиции
математики никакой сложности здесь
нет; преобразовав (1), (2) и (4), получаем:
Соблюдая это условие, можно получать эквивалентные результаты, начисляя проценты как по формуле (3), так и по формуле (4).
Антисипативным методом начисления процентов обычно пользуются в чисто технических целях, в частности для определения суммы, дисконтирование которой по заданным учетной ставке и сроку даст искомый результат. В следующем параграфе будут рассмотрены конкретные примеры возникновения подобных ситуаций.
Как правило, процентные ставки устанавливаются в годовом исчислении, поэтому они называются годовыми. Особенностью простых процентов является то, что частота процессов наращения в течение года не влияет на результат. То есть нет никакой разницы начислять 30% годовых 1 раз в год или 2 раза по 15% годовых. Простая ставка 30% годовых при одном начислении в году называется эквивалентной простой ставке 15% годовых при начислении 1 раз в полгода. Данное свойство объясняется тем, что процесс наращения по простой процентной ставке представляет собой арифметическую прогрессию с первым членом a1 = P и разностью d = (P · i).
P, P + (P · i), P + 2 · (P · i), P + 3 · (P · i), …, P + (k – 1) · (P · i).
Наращенная сумма S есть не что иное, как последний k-й член этой прогрессии (S = ak = P + n · P · i), срок ссуды n равен k – 1. Поэтому если увеличить n и одновременно пропорционально уменьшить i, то величина каждого члена прогрессии, в том числе и последнего, останется неизменной.
Однако продолжительность ссуды (или другой финансовой операции, связанной с начислением процентов) n необязательно должна равняться году или целому числу лет. Напротив, простые проценты чаще всего используются при краткосрочных (длительностью менее года) операциях. В этом случае возникает проблема определения длительности ссуды и продолжительности года в днях. Если обозначить продолжительность года в днях буквой K (этот показатель называется временная база), а количество дней пользования ссудой t, то использованное в формулах (3) и (4) обозначение количества полных лет n можно будет выразить как t/K. Подставив это выражение в (3) и (4), получим:
для декурсивных процентов:
для антисипативных процентов:
В различных
случаях могут применяться
Если временная база (K) принимается равной 365 (366) дням, то проценты называются точными. Если временная база равна 360 дням, то говорят о коммерческих, или обыкновенных, процентах. В свою очередь подсчет длительности ссуды может быть или приближенным, когда исходят из продолжительности года в 360 дней, или точным – по календарю или по специальной таблице номеров дней в году. Определяя приближенную продолжительность ссуды, сначала подсчитывают число полных месяцев и умножают его на 30. Затем добавляют число дней в неполных месяцах. Общим для всех способов подсчета является правило: день выдачи и день возврата кредита считаются за 1 день (назовем его граничный день). В приведенном выше условном примере точная длительность ссуды составит по календарю 99 дней (21 день в марте + 30 дней в апреле + 31 день в мае + 16 дней в июне + 1 граничный день). Тот же результат будет получен, если использовать таблицу номеров дней в году (10 марта имеет порядковый номер 69, а 17 июня – 168). Если же использовать приближенный способ подсчета, то длительность ссуды составит 98 дней (21 + 2 · 30+ 16 + 1).
Наиболее часто встречаются следующие комбинации временной базы и длительности ссуды (цифры в скобках обозначают соответственно величины t и K):
1. Точные проценты с точным числом дней (365/365).
2. Обыкновенные (коммерческие) проценты с точной длительностью ссуды (365/360).