Прогнозирование и принятие управленческих решений

Автор работы: Пользователь скрыл имя, 15 Февраля 2011 в 10:50, контрольная работа

Описание работы

график изменения объемов продаж

Файлы: 1 файл

Мой вариант прогнозир 9.doc

— 496.00 Кб (Скачать файл)
ustify">     

     Подставим полученные результаты в систему (1.4):

      .  

     Решив систему, найдем константы прогнозирующей функции:

      ;

      ;

      ;

      ;

      .

     Следовательно, линейное уравнение имеет вид:

                                                                                              (1.5)

           Для расчета статистических показателей воспользуемся следующими формулами:

  • остаточная дисперсия: - характеризующая отклонение между исходными и расчетными значениями переменной .
  • остаточное среднеквадратическая отклонение: ; 
  • средняя арифметическая: ;
  • коэффициент вариации: ;
  • общая  дисперсия: - измеряющая вариацию переменной за счет действия всех факторов;
  • индекс корреляции: - дающий относительную оценку степени близости линии регрессии к точкам исходной кривой.

     С помощью индекса корреляции ( ) можно оценить не только качество подбора линии прогноза к точкам исходной кривой, но и определить силу (тесноту) корреляционной связи, её близость функциональной зависимости.

     Чем больше индекс корреляции, тем ближе  корреляционная связь к функциональной и тем сильнее взаимодействие между переменными и .  И наоборот, чем в большей степени приближается к нулю, тем менее чётко выражена тенденция изменения показателя yt во времени.

     Сила  связи между переменными считается

    • слабой при ;
    • умеренной при
    • заметной при ;
    • высокой при  ;
    • весьма высокой при и более.

     

Искомые уравнения  тренда:

  • Гиперболическая функция (1.2): .
  • Линейная функция (1.5): .

     

Вычислим значение средней арифметической

: yср = = 1856 : 12= 154,666

     

Рассчитаем статистические показатели, для чего промежуточные  данные вычислений (для суммарных значений) запишем в табличной форме:

                                         

        Таблица 5

Месяцы Объем продаж (
)
Значение  прогнозирующей функции Значения 
Гиперболи-ческой (
)
Линейной (
)
Гиперболической (
)
Линейной (
)
1 108  
239,71
 
86,087
17347,5  
480,18
2177,72
2 78 182,358 98,556 10890,6 422,549 5877,68
3 134 163,241 111,025 855,017 527,851 427,084
4 123 153,682 123,494 941,385 0,24404 1002,74
5 148 147,947 135,963 0,00283 144,889 44,4356
6 111 144,123 148,432 1097,16 1401,15 1906,72
7 156 141,392 160,901 213,385 24,0198 1,77956
8 165 139,344 173,370 658,23 70,0569 106,792
9 183 137,751 185,839 2047,48 8,05992 802,816
10 171 136,476 198,308 1191,88 745,727 266,8
11 234 135,434 210,777 9715,33 539,308 6293,88
12 245 134,565 223,246 12196 473,237 8160,23
Всего: 78 1 856 1856,02 1855,998 57153,9 4837,28 27068,7

     

Вычислим значения

     

   Для гиперболической функции:

     

     

     

     

Для линейной функции:

     

     

     

     

Сравнив эти  три показателя между собой мы видим, что для линейной функции они меньше, чем для гиперболической. Следовательно, линейная функция в данном случае лучше подходит для уравнения прогноза.

     

Чтобы вычислить  индекс корреляции , необходимо вычислить общую  дисперсию по формуле:

 

     

 

     

Причем она  одинакова для любой прогнозирующей функции (в данном случае — для гиперболической и линейной).

     

Рассчитаем значение индекса корреляции :

     

Для гиперболической функции:

     

Для линейной функции:

     

Как видно для  линейной  функции  индекс корреляции  больше 0,9, т.е. теснота связи между переменными весьма высокая и поэтому критерию она, линейная функция, подходит больше, чем гиперболическая.

  1. Построение графиков изменения объема продаж во времени, скользящей средней  и прогнозирующей функции вида 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

Часть II

     

Таблица 1

Месяцы t 1 2 3 4 5 6 7 8 9 10 11 12
Объем продаж (тыс. руб.)

301 212 451 523 512 685 699 483 512 584 608 498
Месяцы t 13 14 15 16 17 18 19 20 21 22 23 24
Объем продаж (тыс. руб.)

524 327 435 481 525 614 507 465 659 686 675 673
 
  1. Построение  графиков исходной кривой, трехчленной скользящей средней; выбор линии тренда и указание уравнения этой функции.

     

Для построения графиков необходимо использовать программу  Excel. После входа в данную программу, нужно создать файл Контрольная работа, ввести в столбце:

  • А – месяцы (1-24);
  • B – объем продаж;
  • С скользящие средние, которые вычисляются по формуле: где а значения выбираются из таблицы 1.

     

Затем щелкнуть на кнопке Мастер диаграмм.  Используя ряды данных А, В и С построить График.

     

Чтобы построить Линию тренда, необходимо выделить ряд данных диаграммы, а затем выбрать команду Вставка и Линия тренда. Для выведения на график уравнение тренда, необходимо в меню Линии тренда в параметрах отметить пункт показывать уравнение на диаграмме.

Рис. 1. Динамика изменения объема продаж  во времени 

  1. Построение  прогнозирующей функции, с использованием функции ТЕНДЕНЦИЯ  или РОСТ.

     

Функция ТЕНДЕНЦИЯ  вычисляет прогнозы, основанные на линейной связи между результатом  наблюдения и временем, в которое это наблюдение было зафиксировано. Если взаимосвязь между объемом продаж ( )  и носит линейный характер, то линия на графике будет либо прямой, слегка наклоненной в одну или другую сторону, либо горизонтальной. В случае, когда линия скользящей средней приближается к прямой, можно использовать функцию  ТЕНДЕНЦИЯ.

     

Если линия  резко изгибается в одном из направлений, то это означает, что взаимосвязь  показателей носит нелинейный характер. Существует большое количество данных, которые изменяются во времени нелинейным способом. В случае нелинейной взаимосвязи функция РОСТ поможет получить более точный прогноз.

     

Чтобы использовать функцию  ТЕНДЕНЦИЯ, необходимо выделить ячейки D2:D25 и ввести следующую формулу, используя формулу массива:

     

= ТЕНДЕНЦИЯ (В2:В25;А2:А25).

     

 Для ввода  формулы массива надо нажать  комбинацию клавиш < Ctrl+Shift+Enter>.

     

Чтобы использовать функцию РОСТ, необходимо выделить ячейки E2:E25 и ввести следующую формулу, используя формулу массива:

     

= РОСТ (В2:В25;А2:А25)

     

В данном случае линия скользящей средней носит нелинейный характер, поэтому нужно использовать функцию РОСТ.

     

Рис. 2. Динамика изменения объема продаж во времени.

     

Все значения, по которым строились графики (рис.1 и рис.2) отражены в таблице ( таблица 2).

     

  Таблица 2

Месяцы Объем продаж (тыс.руб.) Скользящие  средние РОСТ ТЕНДЕНЦИЯ
1 301   428,120 406,28
2 212 321,33 458,794 436,49
3 451 395,33 510,723 505,76
4 523 495,33 525,952 520,35
5 512 573,33 529,543 522,42
6 685 632,00 536,190 527,3
7 699 622,33 505,766 499,86
8 483 564,67 465,863 466,51
9 512 526,33 471,404 470,51
 

     

Информация о работе Прогнозирование и принятие управленческих решений