Автор работы: Пользователь скрыл имя, 27 Марта 2010 в 20:16, Не определен
Зарождение современных технологий в истоках философии
А вот современный софизм, обосновывающий, что с возрастом «годы жизни» не только кажутся, но и на самом деле короче: «Каждый год вашей жизни — это её 1/n часть, где n — число прожитых вами лет. Но n + 1>n. Следовательно, 1/(n + 1)< 1/n».
Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой «софизма Эватла».) С этой же идеей обычно связывают и «критерий основания», сформулированный Протагором: мнение человека есть мера истины. Уже Платон заметил на то, что основание не должно заключаться в субъективной воле человека, иначе придётся признать законность противоречий (что, между прочим, и утверждали софисты), а поэтому любые суждения считать обоснованными. Эта мысль Платона была развита в аристотелевском «принципе непротиворечия» (см. Логический закон) и, уже в современной логике, — в истолкованиях и требовании доказательств «абсолютной» непротиворечивости. Перенесённая из области чистой логики в область «фактических истин», она породила особый «стиль мышления», игнорирующий диалектику «интервальных ситуаций», то есть таких ситуаций, в которых критерий Протагора, понятый, однако, более широко, как относительность истины к условиям и средствам её познания, оказывается весьма существенным. Именно поэтому многие рассуждения, приводящие к парадоксам и в остальном безупречные, квалифицируются как софизмы, хотя по существу они только демонстрируют интервальный характер связанных с ними гносеологических ситуаций. Так, софизм «куча» («Одно зерно — не куча. Если n зёрен не куча, то n + 1 зерно — тоже не куча. Следовательно, любое число зёрен — не куча») — это лишь один из «парадоксов транзитивности», возникающих в ситуации «неразличимости». Последняя служит типичным примером интервальной ситуации, в которой свойство транзитивности равенства при переходе от одного «интервала неразличимости» к другому, вообще говоря, не сохраняется, и поэтому принцип математической индукции в таких ситуациях неприменим. Стремление усматривать в этом свойственное опыту «нетерпимое противоречие», которое математическая мысль «преодолевает» в абстрактном понятии числового континуума (А. Пуанкаре), не обосновывается, однако, общим доказательством устранимости подобного рода ситуаций в сфере математического мышления и опыта. Достаточно сказать, что описание и практика применения столь важных в этой сфере «законов тождества» (равенства) так же, вообще говоря, как и в эмпирических науках, зависит от того, какой смысл вкладывают в выражение «один и тот же объект», какими средствами или критериями отождествления при этом пользуются. Другими словами, идёт ли речь о математических объектах или, к примеру, об объектах квантовой механики, ответы на вопрос о тождестве неустранимым образом связаны с интервальными ситуациями. При этом далеко не всегда тому или иному решению этого вопроса «внутри» интервала неразличимости можно противопоставить решение «над этим интервалом», то есть заменить абстракцию неразличимости абстракцией отождествления. А только в этом последнем случае и можно говорить о «преодолении» противоречия.
По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательствах.
Небольшое
отступление: из данного текста видно,
что софизмы являются определёнными логическими
связками, а софисты используют в них не
само понимание каких-либо предметов а
логические понятия.
1.2 Виды софизмов:
а) софизм «учетверение термина» — силлогическое умозаключение, в котором нарушено правило простого категорического силлогизма: в каждом силлогизме должно быть только три термина. Умышленно ошибочное рассуждение строится с использованием нетождественных, но внешне сходных понятий: например, «Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего»,
б) софизм недозволенного процесса — силлогистическое умозаключение, в котором нарушено правило простого категорического силлогизма: термин, не распределенный (не взятый во всем объеме) в одной из посылок, не может быть распределен (взят во всем объеме) в заключении: «все птицы имеют крылья — некоторые яйцекладущие имеют крылья»;
в)
софизм собирательного среднего термина
— силлогистическое умозаключение,
в котором нарушено правило простого
категорического силлогизма: средний
термин должен быть распределен (взят
во всем объеме) по крайней мере в одной
из посылок: «некоторые
люди умеют играть на
скрипке — все дипломаты-люди
— все дипломаты умеют
играть на скрипке».
1.3 Примеры софизмов
1. Полупустое и полуполное:
Полупустое есть то же, что и полуполное. Если равны половины, значит равны и целые. Следовательно, пустое есть то же, что и полное.
2. Чётное и нечётное:
5 есть 2+3 («два и три»). Два — число чётное, три — нечётное, выходит, что пять — число и чётное и нечётное.
3. Не знаешь то, что знаешь:
«Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».
4. Лекарства:
«Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».
5. Вор:
«Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего»
6. Отец — собака:
«Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».
7. Рогатый:
«Что
ты не терял, то имеешь. Рога ты не терял.
Значит, у тебя рога».
2 Булева алгебра
2.1 Джордж Буль
Решающий вклад в алгебраизацию логики сделал английский ученный Джордж Буль (1815-1864). В 1847 году вышла его работа с характерным названием – “математический анализ логики, являющийся опытом исчисления дедуктивного рассуждения”. Применяя алгебру (в дальнейшем она стала называться булевой алгеброй), можно было закодировать высказывание, истинность и ложность которых требовалось доказать, а потом оперировать ими, как в математики оперируют с числами. Буль ввел три основные операции: И, ИЛИ, НЕ, хотя алгебра допускает и другие операции - логические действия . Эти действия бинарны по своей сути, т. е. они оперируют с двумя состояниями: ”истина” - “ложь”. Данное обстоятельство позволило в дальнейшем использовать булеву алгебру для описания переключательных схем.Необходимо отметить, что окончательное оформление и завершение булева алгебра получила в работах последователей Дж. Буля: У C. Джевонса и Дж. Венна (Англия), Э. Шредера (Германия), П. С. Порецкого (Россия).
Итак,
булева алгебра использует логические
связки, но и софистика также использует
логические связки, их связь очевидна,
попробуем определить связь булевой алгебры
с современными науками.
2.2 Булева алгебра
Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), унарной операцией (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:
ассоциативность | ||
коммутативность | ||
законы поглощения | ||
дистрибутивность | ||
дополнительность |
Первые три аксиомы означают, что (A, , ) является решёткой. Таким образом, булева алгебра может быть определена как дистрибутивная решётка, в которой выполнены две последние аксиомы. Структура, в которой выполняются все аксиомы, кроме предпоследней, называется псевдобулевой алгеброй.
Заметим,
что булева алгебра использует бинарную
систему как и информатика, что ж связь
одного с другим очевидна, идем далее.
2.3 Некоторые свойства
Из аксиом видно, что наименьшим элементом является 0, наибольшим является 1, а дополнение ¬a любого элемента a однозначно определено. Для всех a и b из A верны также следующие равенства:
дополнение 0 есть 1 и наоборот | ||
законы де Моргана | ||
инволютивность отрицания | ||
2.4 Основные тождества
В данном разделе повторяются свойства и аксиомы, описанные выше с добавлением еще нескольких.
Сводная таблица свойств и аксиом, описанных выше:
1 коммутативность | ||
2 ассоциативность | ||
3.1
конъюнкция относительно |
3.2 дизъюнкция относительно конъюнкции | 3 дистрибутивность |
4 дополнительность (свойства отрицаний) | ||
5 законы де Моргана | ||
6 законы поглощения | ||
7 Блейка-Порецкого | ||
8 Идемпотентность | ||
9 инволютивность отрицания | ||
10 свойства констант | ||
дополнение 0 есть 1 | дополнение 1 есть 0 | |
11 Склеивание |
2.5
Примеры
Самая простая нетривиальная булева алгебра содержит всего два элемента, 0 и 1, а действия в ней определяются следующей таблицей:
|
|
|