Логика и методы научного познания

Автор работы: Пользователь скрыл имя, 05 Декабря 2011 в 21:24, реферат

Описание работы

Жизнь современного общества в значительной мере зависит от успехов науки. В нашей квартире стоят холодильник и стиральная машина, телевизор и видеомагнитофон; мы с вами ездим не на лошадях, как это было еще в начале ХХ в., а на автомобилях, летаем на самолетах; человечество избавилось от холеры и оспы, которые когда-то опустошали целые страны; люди высадились на Луну и готовят экспедиции на другие планеты.

Файлы: 1 файл

Реферат-1.doc

— 178.50 Кб (Скачать файл)

Наблюдения разделяются  на непосредственные и косвенные. При  непосредственном наблюдении ученый наблюдает  сам избранный объект. Так биолог наблюдает жизнь муравейника или поведение обезьян в рамках одной семьи. Однако далеко не всегда это возможно. Например, объекты квантовой механики или многие объекты астрономии невозможно наблюдать непосредственно. О свойствах таких объектов мы можем судить лишь на основе их взаимодействия с другими объектами. Подобного рода наблюдения называют косвенными наблюдениями. Косвенное наблюдение опирается на предположение об определенной закономерной связи между свойствами непосредственно наблюдаемых объектов и наблюдаемыми проявлениями этих свойств и содержит логический вывод о свойствах ненаблюдаемого объекта на основе наблюдаемого эффекта его действия. Например, вы сидите в комнате и смотрите в окно. Вы не ощущаете порывов ветра, но, наблюдая за тем, как трепещет листва на деревьях, как сгибаются кустарники и деревья, вы можете судить о силе этих порывов. Приблизительно так же, изучая поведение элементарных частиц, физик непосредственно наблюдает лишь их треки в камере Вильсона, которые представляют собой результат взаимодействия элементарной частицы с молекулами пара, заполняющего камеру. По характеру треков физик судит о поведении и свойствах частицы.  

Следует заметить, что между непосредственным и  косвенным наблюдениями нельзя провести резкой границы. В современной науке косвенные наблюдения получают все большее распространение по мере того, как увеличивается число приборов, используемых при наблюдении, и расширяется сфера научного исследования. Наблюдаемый предмет воздействует на прибор, а ученый непосредственно наблюдает лишь результат взаимодействия предмета с прибором.  

Наблюдение считают  разновидностью научной практики. Это  обусловлено тем, что наблюдение существенно предполагает материальную деятельность, связанную с самим  актом чувственного восприятия, использования приборов и т.п. Его специфика по сравнению с другими видами практики состоит в том, что наблюдение не включает в себя непосредственного физического воздействия на объект (либо этим воздействием можно пренебречь). Но оно является необходимым элементом других эмпирических методов познания – измерения и эксперимента, которые включают в себя практические действия с предметами.  

  

Измерение 

Измерением называют процесс представления свойств  реальных объектов в виде числовой величины. В самом общем виде величиной можно назвать все то, что может быть больше или меньше, что может быть присуще объекту в большей или меньшей степени; числовая величина – это такая величина, которая может быть выражена числом. Таким образом, можно сказать, что измерение есть приписывание чисел свойствам изучаемых объектов. Что значит измерить высоту дерева? – Это значит приписать данному свойству дерева некоторое число, скажем, 22,5 метра.  

Измерение –  новая ступень в развитии эмпирического  познания. Переход от наблюдения к измерению требует новых приборов и инструментов, а также новых понятий и предположений. Результаты наблюдения обычно выражаются с помощью качественных и сравнительных понятий. Качественные понятия – такие, как «теплый», «зеленый», «большой», - обозначают некоторые классы предметов и, приписывая предмету свойство, выражаемое качественным понятием, мы тем самым включаем этот предмет в определенный класс. Когда мы приступаем к исследованию некоторой новой области явлений, то начинаем с выработки качественных понятий, с помощью которых проводим классификацию предметов исследуемой области, опираясь на наблюдение.  

После образования  качественных понятий и разбиения  всех предметов на классы мы можем  установить некоторые соотношения  между классами однородных предметов с помощью сравнительных понятий, таких, как «больше», «теплее», «легче» и т.п. Сравнительные понятия выражают сравнительную степень интенсивности свойства. С их помощью все предметы исследуемой области упорядочивают в определенную последовательность. Например, с помощью понятий «тяжелее», «легче», «равный по весу» мы можем все предметы расположить в последовательность классов, таких, что в один класс попадут предметы, равные по весу, предметы каждого предшествующего класса будут легче предметов последующего класса и предметы последующего – тяжелее предметов предшествующего.  

Измерение описанного вида, опирающееся на сравнительные  понятия, еще не вполне совершенно, так как у нас здесь еще  нет собственно количественных понятий, и числа, приписываемые нами свойствам объектов, выбираются достаточно произвольно. Однако сравнительные понятия могут послужить основой для формирования количественного понятия на базе точных количественных методов исследования. Это оказывается возможным лишь на основе более глубокого познания сущности изучаемых явлений и уточнения теоретических предположений относительно изучаемой области.  

В настоящее  время количественные понятия часто  вводятся на основе теории как теоретические  понятия (отображающие свойства идеализированных объектов). Когда мы строим теорию относительно некоторой области явлений, то объектом теории является непосредственно не сама реальная область, а абстрактная, упрощенная модель этой области явлений – идеализированный (абстрактный) объект. В этом случае количественные понятия относятся прежде всего к идеализированному объекту теории, и лишь поскольку последний отображает реальный объект теории, постольку количественные понятия с определенной степенью точности применимы для характеристики реальных предметов.    

Пусть Q обозначает некоторую степень измеряемого  свойства, U – единицу измерения, а q – числовое значение соответствующей  величины. Тогда результат измерения  можно выразить следующим образом: Q = qU. Это уравнение называется «основным уравнением измерения». Для того чтобы в соответствии с этим уравнением приписать некоторое числовое значение измеряемой величине, нужно руководствоваться следующими «правилами измерения».  

(1) Правило эквивалентности:  если физические значения измеряемых величин равны, то должны быть равны и их числовые выражения; символически: если Q1 = Q2, то q1U = q2U.  

(2) Если физическое  значение одной величины меньше (больше) физического значения другой  величины, то числовое выражение  первой должно быть меньше (больше) числового выражения второй; символически: если Q1   Q2, то q1U    q2U.  

(3) Правило аддитивности: числовое значение суммы двух  физических значений некоторой  величины должно быть равно  сумме числовых значений этой  величины; символически: qU (Q1 + Q2) = q1U + q2U.  

В формулировке данного правила между Q1 и Q2 мы помещаем знак «+», обозначающий эмпирическую операцию соединения двух значений одной величины. Эту операцию следует отличать от арифметического сложения. Операция соединения двух разных значений одной величины не всегда подчиняется данному правилу. Величины, соединение которых подчиняется указанному правилу, называются «аддитивными», Таковы, например, будут вес, длина, объем в классической физике. Если соединить вместе два тела, то вес получившейся совокупности (отвлекаясь от дефекта массы) будет равен сумме весов этих тел. Величины, не подчиняющиеся указанному правилу, называются «неаддитивными». Примером неаддитивной величины может служить температура. Если соединить вместе два тела с температурой, скажем, 20 и 50 градусов Цельсия, то температура этой пары тел не будет равна 70 градусам. Существование неаддитивных величин показывает, что при обращении с количественными величинами мы должны учитывать, какие конкретные свойства обозначаются этими величинами, ибо эмпирическая природа этих свойств накладывает ограничения на операции, производимые с соответствующими количественными величинами.  

(4) Правило единицы  измерения. Мы должны выбрать  некоторое тело или легко воспроизводимый  естественный процесс и охарактеризовать единицу измерения посредство этого тела или процесса. Для температуры задают шкалу измерения, выбирая две крайние точки некоторого процесса, скажем, точку замерзания воды и точку ее кипения, и разделяют отрезок трубки между этими точками на определенное количество частей. Каждая такая часть будет единицей измерения – градусом. Единицей измерения длины является метр, времени – секунда. Хотя единицы измерения выбираются произвольно, однако на их выбор накладываются определенные ограничения. Тело или процесс, избранные в качестве единицы измерения, должны сохранять неизменными свои размеры, форму, периодичность. Строгое соблюдение этих требований было бы возможно только для идеального эталона. Реальные же тела и процессы подвержены изменениям под влиянием окружающих условий. Поэтому в качестве реальных эталонов выбирают как можно более устойчивые к внешним воздействиям тела и процессы.  

  

                                         2.3. Эксперимент 

Важнейшим методом  эмпирического познания является эксперимент, который обычно включает в себя наблюдение и измерение, а также непосредственное физическое воздействие на изучаемые объекты. Одной из наиболее характерных особенностей науки Нового времени является широкое использование эксперимента в научном исследовании.  

Эксперимент есть непосредственное материальное воздействие  на реальный объект или окружающие его условия, производимое с целью  познания этого объекта.  

В эксперименте можно выделить следующие элементы: 1) цель эксперимента; 2) объект экспериментирования; 3) условия, в которых находится или помещается объект; 4) средства эксперимента; 5) материальное воздействие на объект. Каждый из этих элементов может быть положен в основу классификации экспериментов. Например, эксперименты можно разделять на физические, химические, биологические и т.д. в зависимости от различия объектов экспериментирования. Одна из наиболее простых классификаций основывается на различиях в целях эксперимента.  

Целью эксперимента может быть установление каких-либо закономерностей или обнаружение фактов. Эксперименты, производимые с такой целью, называются «поисковыми». Результатом поискового эксперимента является новая информация об изучаемой области. Однако чаще всего эксперимент проводится с целью проверки некоторой гипотезы или теории. Такой эксперимент называется «проверочным». Ясно, что невозможно провести резкой границы между этими двумя видами эксперимента. Один и тот же эксперимент может быть поставлен для проверки гипотезы и в то же время дать неожиданную информацию об изучаемых объектах. Точно так же и результат поискового эксперимента может заставить нас отказаться от принятой гипотезы или, напротив, даст эмпирическое обоснование нашим теоретическим рассуждениям. В современной науке один и тот же эксперимент все чаще обслуживает разные цели.  

Эксперимент всегда представляет собой вопрос, обращенный к природе. Но чтобы вопрос был  осмысленным и допускал определенный ответ, он должен опираться на предварительное  знание об исследуемой области. Это  знание дает теория и именно теория ставит тот вопрос, ответ на который должна дать природа. Поэтому эксперимент как вид материальной деятельности всегда связан с теорией. Первоначально вопрос формулируется в языке теории, т.е. в теоретических терминах, обозначающих абстрактные, идеализированные объекты. Чтобы эксперимент мог ответить на вопрос теории, этот вопрос нужно переформулировать в эмпирических терминах, значениями которых являются эмпирические объекты.  
 

Первый этап – выбор эмпирической интерпретации  теоретических величин – очень важен при подготовке эксперимента. Только после этого наши теоретические построения и расчеты приобретают эмпирический смысл, а сам эксперимент становится принципиально возможным. В эксперименте Лебедева световое давление эмпирически было представлено как закручивание подвеса, а интенсивность света – как тепловое расширение в термоэлементе. Закручивание подвеса и тепловое расширение можно было наблюдать и измерять непосредственно.  

Второй этап в проведении эксперимента – выбор  условий и используемых приборов – определяется эмпирической интерпретацией теоретических величин. Если мы хотим, чтобы световое давление было представлено как закручивание подвеса, то мы должны обеспечить создание таких условий, чтобы это закручивание не могло быть вызвано никакими другими факторами. В эксперименте Лебедева трудность состояла в том, что силы светового давления очень малы, и их действие легко перекрывалось рядом других факторов. Среди них наиболее существенными были конвекционные токи воздуха и радиометрические силы. Когда подвес был окружен воздухом, движение воздушных потоков могло закручивать его. Чтобы устранить или хотя бы ослабить действие этого фактора, Лебедев поместил подвес в стеклянный баллон, из которого воздух можно было откачать. Радиометрический эффект заключается в том, что освещенная сторона пластинки нагревается сильнее неосвещенной стороны, и противоположные стороны испытывают неодинаковое давление газа, что может также вызвать закручивание подвеса. Чтобы избежать этого, крылышки приходилось делать как можно более тонкими. Трудности, связанные с исключением всех побочных эффектов, были в данном случае столь велики, что на их преодоление у Лебедева ушло более трех лет.  

После того, как  выбраны условия эксперимента и  исключено влияние всех побочных факторов, наступает третий этап: воздействие на объект, наблюдение его поведения и измерение контролируемых величин. Этот этап можно назвать решающим в проведении эксперимента. Именно для него проводится вся подготовительная работа, и именно на этом этапе мы получаем ответ на вопрос теории, обращенный к природе. В эксперименте Лебедева ответ был положительным, а в эксперименте Майкельсона, например, природа ответила: «Нет!», хотя уверенность в существовании эфира была ничуть не меньшей, чем уверенность в существовании светового давления.  

Последний, четвертый, этап в проведении эксперимента заключается  в обработке полученных данных, их теоретическом осмыслении и включении  в науку. Закручивание подвеса, наблюдавшееся  в эксперименте, истолковывается как вызванное световым давлением. Отсюда делается вывод, что давление света действительно существует, и утверждение об этом включается в теорию как получившее экспериментальное обоснование.  

Информация о работе Логика и методы научного познания