Искусственный интеллект

Автор работы: Пользователь скрыл имя, 22 Февраля 2011 в 19:54, реферат

Описание работы

Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами. Основными методами изучения искусственной жизни являются: синтез искусственных систем с аналогичным живым системам поведением, изучение динамики развития процесса, а не конечного результата, конструирование систем демонстрирующих феномен созидания.

Содержание работы

Введение 3

Взгляды на термин "знание" 5

Аспект представления знаний 5

Знание как основа 6

Рефлексия как одна из составляющих интеллектуальной деятельности 9

Понятие рефлексии 9

Неотъемлимость рефлексии 12

Математическо-технические аспекты реализации систем

искусственного интеллекта 13

Природа обработки естественного языка 15

Основная проблема обработки естественного языка 16

Распознавание речи 17

Практическая реализация 18

Семантические сети 20

Искусственный интеллект и теоретические проблемы психологии 21

Сознаниие и разум 23

Что такое сознание? 23

Сознание и выживание 24

Есть ли разум? 25

Чем же отличается сознание от самообучения? 26

Человек вооружен 27

Осознавание себя 27

Сознание - это не материальный предмет 28

Разумны только люди? 30

Заключение 31

Словарь терминов 33

Использованная литература 35

Файлы: 1 файл

ИСКУССТВЕННЫЙ ИНТЕЛЕКТ.DOC

— 78.50 Кб (Скачать файл)

МИНИСТЕРСТВО ОБЩЕГО И

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ 
 

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ 

КАФЕДРА ФИЛОСОФИИ 
 
 
 
 
 
 
 

РЕФЕРАТ 

ПО ДИСЦИПЛИНЕ “ФИЛОСОФИЯ”

НА ТЕМУ: “ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ” 
 
 
 
 
 
 
 

Факультет: ПМиИ

Группа:  ПММ-41

Студент:  Слепынин А. Ю.

Преподаватель: Буторин В. Я. 
 
 

Новосибирск 1999г.

Содержание

 

Введение           3

Взгляды на термин "знание"        5

      Аспект представления знаний       5

      Знание как основа         6

Рефлексия как одна из составляющих интеллектуальной деятельности  9

      Понятие рефлексии         9

      Неотъемлимость рефлексии       12

Математическо-технические аспекты реализации систем

искусственного интеллекта         13

      Природа обработки естественного языка      15

      Основная проблема обработки естественного языка    16

      Распознавание речи         17

Практическая реализация         18

      Семантические сети         20

Искусственный интеллект и теоретические проблемы психологии   21

Сознаниие и разум          23

      Что такое сознание?         23

      Сознание и выживание        24

      Есть ли разум?         25

      Чем же отличается сознание от самообучения?     26

      Человек вооружен         27

      Осознавание себя         27

      Сознание - это не материальный предмет     28

      Разумны только люди?        30

Заключение           31

Словарь терминов          33

Использованная литература        35 

Введение

 

      Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из выдающихся достижений заново открытых в 20 веке. Искусственный интеллект и искусственная жизнь представляют прекрасный пример такой интеграции многих научных областей. Конечно, междисциплинарность тоже имеет свою цену. Химики, биологи, специалисты в области вычислительных наук и многие другие изучают различные аспекты живых систем, пользуясь при этом сходными методами. Основными методами изучения искусственной жизни являются: синтез искусственных систем с аналогичным живым системам поведением, изучение динамики развития процесса, а не конечного результата, конструирование систем демонстрирующих феномен созидания. То что объединяет исследователей в области искусственной жизни (ИЖ) - это методы, в отличие от их целей. Конечно, существует общий интерес к жизни как к феномену для изучения. К сожалению, жизнь слишком сложна, чтобы можно было наметить общие направления в исследованиях. Доказательствам последнего утверждения может служить тот факт, что некоторые заинтересованы в исследовании “систем, демонстрирующих феномены живых систем”, другие изучают природу химического репродуцирования или пытаются решить философские проблемы самосознания. В то же время совершенно другой вид исследователей, относящихся к области роботики, пытаются создавать физические системы, демонстрирующие некоторое поведенческое сходство с животными. По современным научным данным человеческий мозг содержит около 240 основных “вычислительных” узлов нейронов, которых соединяют около 250 связей синапсов. Современные вычислительные системы стремительно приближаются по своим вычислительным возможностям к мозгу. Искусственные нейронные сети контролируют сложнейшие системы управления и слежения, проявляют способности в области распознавания изображения вплоть до возможности создания интеллектуальных автопилотов. Уже активно занимается искусственными системами область, считавшаяся прерогативой человека - компьютеры стали лучше людей играть в шахматы. В таких условиях приобретает особую значимость рассмотрение основных философских вопросов, связанных с искусственным интеллектом и искусственной жизнью. При этом, очевидно, возможно взаимовлияние искусственного интеллекта и искусственной жизни на философские проблемы мышления и жизни вообще.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Взгляды на термин “знание”

 

      В последние годы термин “знание” все чаще употребляется в информатике. Он встречается в таких словосочетаниях, как “база знаний”, “банк знаний”, язык представления знаний”, “системы представления знаний” и других. Специалисты подчеркивают, что совершенствование так называемых интеллектуальных систем (информационно-поисковых систем высокого уровня, диалоговых систем, базирующихся на естественных языках, интерактивных человеко-машинных систем, используемых в управлении, проектировании, научных исследованиях) вот многом определяется тем, насколько успешно будут решаться задачи представления знаний. 

Аспект представления знаний

      Неудивительно, что перед теми, кто занимается проблемой представлении знаний, встает вопрос о том, что такое знание, какова его природа и основные характеристики. В связи с этим предпринимаются, например, попытки дать такое определение знания, из которого можно было бы исходить в решении задач представления знаний в компьютерных системах. Подчеркивается, что для разработки средств и методов представления знаний необходимо использовать результаты когнитивной психологии - науки, выявляющей структуры, в виде которых человек хранит информацию об окружающем его мире. Высказывается мнение, что язык и представление знаний в системах искусственного интеллекта должны рассматриваться в рамках особого научного направления - когитологии. Предметом когитологии должно стать знание как самостоятельный аспект реальности.

      Представлению данных присущ пассивный аспект: книга, таблица, заполненная информацией память. В теории искусственного интеллекта особо подчеркивается активный аспект представления: знать должно стать активной операцией, позволяющей не только запоминать, но и извлекать воспринятые (приобретенные, усвоенные) знания для рассуждений на их основе. Следовательно, истоки представления знаний - в науке о познании  (эпистемологии или гносеологии), а его конечная цель - программные средства информатики.

      Во многих случаях подлежащие представлению знания относятся к довольно ограниченной области, для характеристики которой говорят об “области рассуждений” или “области экспертизы”. Численная формализация таких описаний в общем малоэффективна. Напротив, использование символического языка, такого, как язык математической логики, позволяет формулировать описания в форме, одновременно близкой и к обычному языку, и к языку программирования. Впрочем, математическая логика позволяет рассуждать, базируясь на приобретенных знаниях: логические выводы действительно являются активными операциями получения новых знаний из уже усвоенных. 

Знание как основа

      Вместе с тем вопрос, что такое знание, каковы его основные свойства и способы получения, - это исконно философский вопрос. Закономерно поэтому стремление дать философское осмысление вопросов компьютерного представления знаний, выявляя прежде всего их гносеологические и философско-логические аспекты.

      Принципиальная мировоззренческая установка состоит в рассмотрении ЭВМ как предмета-посредника в человеческой познавательной деятельности. Компьютерная система, подобно другим предметам-посредникам (орудиям труда и предметам быта, инструментам, приборам, знаково-символическим системам, научным текстам и т. д.), играя инструментальную роль в познании, является средством объективизации накопленного знания, воплощением определенного социально-исторического опыта практической и познавательной деятельности. Ее важнейшая теоретико-познавательная роль и обусловлена тем, что выделение человеком во вновь познаваемых объектов черт, которые оказываются существенными с точки зрения общественной практики, становится возможным именно при помощи предметов-посредников. “ЭВМ, - подчеркивает акад. Г. С. Поспелов, - представляет собой инструмент для интеллектуальной деятельности людей, а научное направление “искусственный интеллект” придает этому инструменту новые качества и обеспечивает новый, более перспективный стиль его использования. Спор между сторонниками и противниками искусственного интеллекта оказывается в связи с этим совершенно беспредметным.

      Проблема представления знаний возникла как одна из проблем искусственного интеллекта. Она связана с переходом исследований в этой области в некоторую новую фазу. Речь идет о создании практически полезных систем (прежде всего так называемых экспертных систем), применяемых в медицине, геологии, химии. Создание такого рода систем требует интенсивных усилий по формализации знания, накопленного в соответствующей науке.

      С термином “представление знаний” связывается определенный этап в развитии математического обеспечения ЭВМ. Если на первом этапе доминировали программы, а данные играли вспомогательную роль своеобразной “пищи” для “голодных” программ, то на последующих этапах роль данных неуклонно возрастала. Их структура усложнялась: от машинного слова, рамещенного в одной ячейке памяти ЭВМ, происходил переход к векторам, массивам, файлам, спискам. Венцом этого развития стали абстрактные типы данных, обеспечивающие возможность создания такой структуры данных, которая наиболее удобна при решении задачи. Последовательное развитие структур данных привело к их качественному изменению и к переходу от представления данных к представлению знаний. Уровень представления знаний отличается от уровня представления данных не только более сложной структурой, но и существенными особенностями: интерпретируемость, наличие классифицируемых связей (например, связь между знаниями, относящихся к элементу множества, и знаниями об этом множестве), которые позволяют хранить информацию, одинаковую для всех элементов множества, записанную одноактно при описании самого множества, наличие ситуативных отношений (одновременности, нахождения в одной точке пространства и т. п., эти отношения определяют ситуативную совместимость тех или иных знаний, хранимых в памяти). Кроме того, для уровня знаний характерны такие признаки, как наличие специальных процедур обобщения, пополнения имеющихся в системе знаний и ряда других процедур.

      Для философского анализа рассматриваемой проблематики важен вопрос о том, считать ли термин “знание” в выражении “представление знаний” явлением профессионального жаргона или действительно переход от представления данных к представлению знаний имеет существенные гносеологические характеристики и какие именно? Особенности ЭВМ как предмета-посредника в познании во многом определяются тем, что ЭВМ относится к такому типу предметов-посредников, как модели. Термин “модель” употребляется в обыденном языке и в языке науки в различных значениях. Пусть под моделью понимается некоторая система (материальная или концептуальная), в той или иной форме отображающая некоторые свойства и отношения другой системы, называемой оригиналом, в точно указанном смысле замещающая ее и дающая новую информацию об оригинале. При анализе гносеологических аспектов моделирования ЭВМ рассматривались в философско-методологической литературе прежде всего как материальные модели, создаваемые на основе действия определенных физических закономерностей и функционирующие благодаря протеканию в них вполне определенных физических процессов. Моделирование на ЭВМ понималось как техническая реализация определенной формы знакового моделирования. Однако, рассматривая ЭВМ в гносеологическом плане как предмет посредник в познании, имеет смысл не фиксировать внимание прежде всего на “железной части” (hardware) компьютера, а рассматривать всю компьютерную систему как сложную систему взаимосвязанных и до некоторых пределов самостоятельных моделей - как материальных, так и знаковых, т. е. идеальных. Такой подход не только соответствует рассмотрению компьютерных систем в современной информатике, но является и гносеологически оправданным. Многие важные философские аспекты проблем, возникающих в связи с компьютеризацией различных сфер человеческой деятельности, требуют для своего исследования обращения прежде всего к знаковым составляющим компьютерных систем. Это верно и в отношении философских аспектов проблем представления знаний.

      В последние годы все чаще стал употребляться термин “компьютерное моделировнаие”. Очевидно, имеет смысл обозначать им построение любого из состовляющих компьютерной системы - будь то знаковая модель или материальная.

      Что изменяется в компьютерном моделировании с переходом от представления данных к представлению знаний? Каков гносеологический смысл этих изменений? А. Ньюэлл, отмечая, что проблематика представления знаний имеет интересные точки соприкосновения с философией, ибо природа разума и природа знания всегда являлись одним из центральных филосовских вопросов, пишет: “Однако, интерес философии к знанию всегда концентрировался на проблеме достоверности... Это нашло отражение в том различении между знанием и верой, которое проводится в философии. Искусственный интеллект, рассматривая все знание как содержащие ошибки, называет все-таки свои системы системами знаний. С точки зрения философии искусственный интеллект имеет дело только с системами веры. ...Таким образом, учение о знании, если оно разделит с искусственным интеллектом безразличие к проблеме абсолютной достоверности, окажется оставляющим без внимания центральные филосовские вопросы”. Различия в подходах к знанию, имеющиеся в философии и в искусственном интеллекте, не дают оснований для абсолютного противопоставления этих подходов и для отстранения от проблематики представления знаний той философии, которая не желает “оставлять без внимания центральные филосовские вопросы”.

Информация о работе Искусственный интеллект