Автор работы: Пользователь скрыл имя, 06 Ноября 2009 в 18:13, Не определен
Почти каждый аспект современных знаний о Солнце представляет проблему. Это единственная звезда, о которой мы знаем достаточно много, чтобы ощутить, как мало мы знаем»
§3.
Влияние солнечных катаклизмов
на Землю.
Итак, где же нам искать проявления солнечно-земных
связей? "Конечно же, на нашей планете!"
- ответите вы и будете абсолютно правы:
проявления солнечно-земных взаимодействий
необходимо искать в земных оболочках.
3.1. Общие соображения о солнечно- земных связях
Солнечная активность оказывает широкое воздействие на процессы, происходящие на нашей планете. До сих пор мы говорили о Солнце, но было бы логично завершить наш разговор хотя бы кратким описанием того, как солнечная активность воздействует на Землю. Солнечная активность дает о себе знать на Земле двумя типами излучения: электромагнитным (от гамма-лучей с длинной волны примерно 0,01 А до километровых радиоволн) и корпускулярным (потоки заряженных части, имеющие плотность от нескольких до десятков частиц в 1 кубическом сантиметре с энергиями от сотен до миллионов эВ). На пути к Земле они встречают многочисленные преграды, главными из которых являются магнитные поля в межпланетном и околоземном пространстве. Это обстоятельство сказывается по разному. Электромагнитное излучение бесприпятственно проникает в верхние слои земной атмосферы, где оно в основном поглощается и преобразуется. Поврхности Земли достигает лишь радиация Солнца в ближнем ультрафиолете и видимой области спектра, интенсивность которой почти не зависит от солнечной активности, и в узком участке радиоспектра, которая очень слаба. Основным объектом приложения воздействия этого типа солнечного излучения, является ионосфера, своеобразное зеркало, отражающее радиоволны к Земле, и нейтральная атмосфера Земли. Верхние слои земной атмосферы легко поддаются воздействию солнечной активности, и поэтому иногда характеристики происходящих в них изменений даже используют в качестве косвенных индексов солнечной активности.
Совсем иначе обстоит дело с воздействием солнечной активности на тропосферу, нижнюю часть земной атмосферы, которая определяет климат и погоду на Земле. До сравнительно недавнего времени многие очень авторитетные метеорологи утверждали, что погода на Земле обусловлена чем угодно, только не солнечной активностью. Это явилось своеобразной реакцией на другу крайнюю точку зрения, заключавшуюся в том, что любое нарушение погодных условий в любом месте на Земле может быть вызвано проходящей в это время по диску Солнца активной областью. В качестве главного аргумента против такого воздействия выдвигалась большая инерция земной атмосферы и ее практически полная изолированность от внешних воздействий, тем более таких слабых в энергетическом отношении, как счолнечная активность.
Кроме того, отмечалась неустойчивость обнаруженных статистических связей, а иногда даже полное их отсутствие. Тем не менее детальный анализ проблемы Солнце- тропосфера привел к заключению, что солнечная активность определено воздействует и на нижнюю часть атмосферы нашей планеты. Только оно складывается лишь в неустойчивых областях.
Еще более трудным для решения выглядит вопрос о воздействии солнечной активности на биосферу Земли. В последние годы все больше исследователей склоняется к мнению, что воздействие солнечной активности на биосферу Земли определенно существует, причем оно бывает как непосредственным, так и связанным с изменением погоды и климата.
Наконец, иногда говорят даже о возможных изменениях особенностей строения земной коры или внутреннего строения Земли в зависимости от уровня солнечной активности. Но эта возможность еще более проблематична, хотя было бы преждевременно отвергать ее только на этом основании.
Далее
будут рассмотрены вопросы
3.2. Солнечная активность и верхняя атмосфера.
Начнем
с влияния на верхнюю атмосферу
Земли электромагнитного
Поскольку
электронная плотность в
Но помимо постепенных изменений условий радиосвязи, обусловленных ходом 11-летнего цикла солнечной активности, нередко мы сталкиваемся с еще одним (гораздо более неприятным) эффектом воздействия на верхнюю атмосферу электромагнитного излучения Солнца — внезапным затуханием радиосигнала при коротковолновой радиосвязи. Теперь его обычно называют внезапным ионосферным возмущением, до недавнего времени оно было также известно под названием эффекта Деллинджера. Начальная фаза этого явления длится в среднем несколько минут, а общая его длительность составляет около часа. Внезапные ионосферные возмущения вызываются повышенной ионизацией области D ионосферы, виновником которой служит приход рентгеновского излучения с длиной полны меньше 10 А от солнечных вспышек. Повышение ионизации в этом случае влияет также на распространение длинных и очень длинных радиоволн, а также приводит к усилению отражения длинных радиоволн, создаваемых в земной атмосфере грозами.
Гораздо
сложнее дело обстоит с воздействием
на верхнюю атмосферу
Необходимо подчеркнуть, что только протоны энергий, характерных для протонных вспышек, в состоянии проникать глубоко в земную атмосферу что же касается остальных составляющих корпускулярного излучения Солнца, то они недостаточно энергичны, чтобы не быть задержанными магнитным полем Земли, и только после ускорения до необходимых энергий могут попасть в верхние слои земной атмосферы.
Приближаясь к Земле со сверхзвуковой скоростью, поток солнечных частиц, обладающий высокой электропроводностью, вступает во взаимодействие с геомагнитным полем. При этом в нем возникает система индуцированных электрических токов, магнитное поле которых сильно искажает геомагнитное поле. Оно уничтожает магнитное поле Земли внутри потока солнечного ветра и усиливает геомагнитное поле перед фронтом этого потока. В результате в потоке образуется полость, внутри которой расположена Земля со своим магнитным полем. Эту полость называют магнитосферой.»
Обращенная к Солнцу граница магнитосферы находится в среднем на расстоянии 10—12 радиусов Земли. При обтекании геомагнитного поля солнечным ветром возникает устойчивая ударная волна, т. е. граница, отделяющая области пространства с существенно различными характеристиками плазмы и магнитного поля. На некотором расстоянии перед ней расположена магнито-пауза, которая служит границей магнитосферы и имеет толщину 100—200 км. Между ударной волной и магни-топаузой образуется переходная область, отличающаяся турбулентным состоянием вещества и неправильными колебаниями магнитного поля. Магнитогидродинамике-скос 'взаимодействие солнечного ветра с геомагнитным полем «сдувает» часть силовых линий с дневной стороны (обращенной к Солнцу) на ночную и тем самым приво дит к образованию хвоста магнитосферы, или геомаг» нитного хвоста, который можно проследить до 1000 радиусов Земли. Силовые линии этого хвоста по обе стороны от геомагнитного экватора имеют противоположное направление. Около экватора они находятся так близко друг к другу, что могут соединяться, создавая вблизи геомагнитного экватора нейтральный слой, напряженность магнитного ноля в котором близка к нулю, а направление перпендикулярно к плоскости геомагнитного экватора. На дневной стороне северной и южной полярных шапок Земли образуются замкнутые воронкообразные области, которые получили название дневных полярных каспов. Они отделяют замкнутые силовые линии на дневной стороне магнитосферы от разомкнутых, уходящих в ее хвост.
Именно
процессы, происходящие в нейтральном
слоё хвоста магнитосферы, определяют
возникновение целой группы явлений, называемых
авроральными, которые разыгрываются
в двух овальных зонах вблизи северного
и южного геомагнитных полюсов, так называемых
авроральных овалах. Это полярные магнитные
бури, или суббури, полярные (Гйяния, ионосферные
возмущения. Суббури представляют собой
геомагнитные возмущения длительностью 1—2 часа,
возникающие около полуночи по местному
времени и проявляющиеся в бухтообразном
падении горизонтальной составляющей
геомагнитного поля, на которые накладываются
беспорядочные флуктуации поля. Полярные
сияния видны в высокоширотных районах
Земли и представляют собой изумительное
зрелище. Иногда вблизи максимума наиболее
мощных 11-летних циклов их наблюдают
и на средних широтах. Вид полярных сияний
весьма разнообразен, но в общем он сводится
к четырем классам: спокойным однородным
дугам или полосам, лучам, пятнам или поверхностям
без определенной формы и вуали, однородному
свечению, покрывающему большие участки
небосвода. В начале этого раздела мы уже
говорили о внезапных ионосферных возмущениях,
обусловленных электромагнитным излучением
Солнца. Магнитосферные возмущения также
приводят к ионосферным возмущениям в
высокоширотных районах, которые проявляются
в полном прекращении радиосвязи на коротких
волнах в ночное время в результате вторжения
потоков частиц из хвоста магнитосферы.
Все авроральные явления возникают в результате грандиозного процесса (магнитосферного возмущения), развивающегося в магнитосфере при вторжении высокоскоростного потока частиц, солнечного ветра или вмороженного в его плазму магнитного поля, которое имеет составляющую, направленную к югу. При этом пересоеди-пенные силовые линии геомагнитного поля «сносятся» в хвост магнитосферы и там сближаются, что приводит к возрастанию в нем напряженности магнитного ноля и, следовательно, к возникновению неустойчивости этого поля. В хвосте происходит бурное перссоедииенис противоположно направленных силовых линий и перемещение их в сторону Земли. Они увлекают за собой плазму, заполняющую плазменный слой геомагнитного хвоста. Заряженные частицы устремляются вдоль границы между замкнутыми и разомкнутыми силовыми линиями и приходят в аморальные овалы. Перемещаясь из области слабого магнитного поля в Хвосте в область сильного вблизи замкнутой магнитосферы, частицы ускоряются. Частицы, получившие наибольшее ускорение, прорываются в замкнутую магнитосферу и образуют там кольцевой электрический ток, вызываюший ослабление геомагнитного поля во время главной фазы магнитной бури. В авроральных овалах эти частииы увеличивают ионизацию ионосферы. Это ведет к поглощению радиоволн в нижних слоях ионосферы и существенному повышению проводимости ионосферы. В результат появляются ионосферные электрические токи, магнитные поли которых регистрируются на земной поверхности. Так возникают возмущения в нижних слоях ионосферы и магнитные бури. Наконец аморальные частицы сталкиваются с атомами и молекулами воздуха, возбуждая их свечение, т. е. полярные сияния.
Информация о работе Солнечная активность, атмосфера и погода