Солнечная активность, атмосфера и погода

Автор работы: Пользователь скрыл имя, 06 Ноября 2009 в 18:13, Не определен

Описание работы

Почти каждый аспект современных знаний о Солнце представляет проблему. Это единственная звезда, о которой мы знаем достаточно много, чтобы ощутить, как мало мы знаем»

Файлы: 1 файл

Солнечная активность, атмосфера и погода..doc

— 804.00 Кб (Скачать файл)

       Вся солнечная атмосфера  постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и  происходят  с периодом около  5  мин. В возникновении явлений происходящих на Солнце большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных областях напряженность магнитного поля быстро и сильно возрастает. Этот процесс  сопровождается возникновением целого комплекса явлений солнечной активности в различных слоях солнечной атмосферы. К ним относятся  факелы  и   пятна в фотосфере,  флоккулы в хромосфере,  протуберанцы  в короне. Наиболее замечательным явлением, охватывающим  все слои солнечной атмосферы и зарождающимся в хромосфере, являются солнечные  вспышки. 
§2. Солнечная активность 

          «Спокойная» или  «невозмущенная» атмосфера Солнца представляет собой как бы фон, на котором происходит много любопытных, порой драматических событий.

       Солнечная активность - совокупность явлений, периодически возникающих в  солнечной  атмосфере. Проявления  солнечной активности тесно связаны с магнитными свойствами солнечной плазмы. Возникновение активной области  начинается с постепенного увеличения магнитного потока в некоторой области фотосферы. В соответствующих местах хромосферы после этого наблюдается  увеличение яркости в линиях водорода и кальция. Такие  области называют флоккулами. Примерно в тех же участках на Солнце  в фотосфере (т.е. несколько глубже) при этом также наблюдается увеличение яркости в белом (видимом) свете - факелы. Увеличение энергии, выделяющейся в области факела и флоккула, является следствием увеличившихся до нескольких десятков  экстред  напряженности  магнитного  поля. Затем в солнечной активности наблюдаются солнечные пятна, возникающие через 1-2 дня после появления флоккула в  виде  маленьких  чёрных точек -  пор. Многие  из  них вскоре исчезают, и лишь отдельные поры за 2-3 дня превращаются в крупные тёмные образования. Типичное  солнечное пятно имеет  размеры  в несколько десятков тысяч километров и состоит из тёмной центральной части - тени и волокнистой полутени. Важнейшая особенность пятен - наличие в них сильных магнитных полей, достигающих в области тени наибольшей напряжённости в несколько тысяч экстред. В целом пятно представляет  собой выходящую в фотосферу трубку силовых линий магнитного поля, целиком заполняющих одну  или несколько ячеек хромосферной сетки. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе. Поэтому вокруг тени  магнитные силовые линии принимают направление, близкое к горизонтальному. Полное, суммарное давление в пятне включает в себя давление магнитного  поля и уравновешивается давлением окружающей фотосферы, поэтому газовое давление в пятне оказывается меньшим, чем  в  фотосфере. Магнитное поле как бы расширяет пятно изнутри. Кроме того, магнитное поле подавляет конвективные движения газа, переносящие энергию из глубины вверх. Вследствие этого в области пятна температура оказывается меньше примерно на 1000К. Пятно как бы охлаждённая и  скованная магнитным полем яма в солнечной фотосфере. Большей частью пятна возникают целыми группами, в  которых, однако, выделяются  два  больших  пятна. Одно, наибольшее, -  на  западе, а  другое, чуть  поменьше, - на востоке. Вокруг и между ними  часто  бывает  множество  мелких  пятен. Такая группа пятен называется биополярной, потому что у обоих больших пятен всегда противоположная полярность магнитного поля. Они как бы  связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из-под фотосферы, оставив концы где-то в ненаблюдаемых, глубоких слоях. То пятно, которое соответствует выходу магнитного поля из фотосферы, имеет северную  полярность, а то, в области которого силовые линии входят обратно под фотосферу,  - южную.

       Самое мощное проявление фотосферы - это  вспышки. Они происходят  в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. По своей сути  вспышка - это взрыв, вызванный внезапным сжатием солнечной  плазмы. Сжатие  происходит под давлением магнитного  поля и приводит к образованию  длинного плазменного жгута или ленты. Длина  такого  образования  составляет десятки, и даже сотни тысяч километров. Продолжается вспышка обычно около часа. Хотя детально физические процессы, приводящие  к возникновению вспышек, ещё не изучены, ясно, что они имеют электромагнитную природу.

       Наиболее  грандиозными образованиями в солнечной  атмосфере являются протуберанцы - сравнительно плотные облака газов, возникающие в солнечной короне или выбрасываемые в неё из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями  и потоками более плотного и холодного, чем окружающая корона, вещества. Иногда это вещество удерживается прогнувшимся под его  тяжестью  силовыми линиями магнитного поля, а иногда медленно стекает вдоль магнитных силовых линий. Имеется множество различных типов протуберанцев. Некоторые  из них связаны со взрывоподобными выбросами вещества  из хромосферы в корону.

       Общая активность Солнца,  характеризуемая  количеством и  силой проявления центров солнечной активности, периодически изменяется. Существует множество удобных различных способов оценивать уровень солнечной активности. Обычно пользуются наиболее простым и введённым раньше всех способом - числами Вольфа. Числа Вольфа пропорциональны сумме полного числа пятен, наблюдаемых в данный момент  на  Солнце, и  удесятерённого числа групп, которые   они  образуют. Период  времени, когда  количество центров активности наибольшее называют максимумом солнечной активности, а когда их совсем нет или почти совсем нет - минимумом. Максимумы и минимумы чередуются в среднем с периодом 11  лет. Это составляет  так называемый 11-и  летний цикл солнечной активности.

       Солнечная активность имеет циклический характер, который зримо проявляется в пятнообразовательной деятельности, в частоте солнечных вспышек и связанных с ними эффектов. В цикле меняется количество и распределение протуберанцев, форма солнечной короны, количество факелов и т. д. Период этих циклических вариаций составляет примерно 11 лет, хотя в нашем столетии средний период был ближе к 10 годам. Показатели солнечной активности, как правило, возрастают к максимуму быстрее, чем спадают от него к минимуму.

       Существуют  свидетельства о цикле с периодом около 80 лет (восьмидесятилетний цикл). Есть также некоторые доказательства о долгопериодических вариациях активности с периодом 200, 400 и 600 лет.

       При повторениях солнечного цикла наблюдаются  нерегулярности. Меняется и длительность циклов, и форма зависимости чисел  Вольфа от времени, и значения ее максимума  и минимума. Отмечаются, по-видимому, нерегулярности с гораздо большими масштабами времени и амплитуд. Например, в течение 70 лет, с 1645 по 1715 гг. наблюдалось очень мало солнечных пятен, в этот период имело место резкое ослабление солнечной активности, что было названо «минимумом Маундера».

         Длительные исследования циклической  пятнообразовательной деятельности  Солнца на экваторе ускорилось  на 3-4% и разность скоростей вращения широтах 0 и 20 градусов увеличилась в 2 раза. Из современных спектральных наблюдений следует, что аналогичные ускорения вращения на экваторе имеют место в эпоху спокойного Солнца. Высказано предположение, что в годы максимумов солнечной активности магнитное поле как бы притормаживает вращение Солнца на экваторе.

       Природа активных образований на Солнце и причина их периодичности начинают выясняться только в последнее время. Картина еще не вполне ясна в деталях, некоторые положения не всегда надежны, и часть представлений может измениться в будущем. Тем не менее различные проявления солнечной активности уже можно рассматривать как единый процесс, связанный с жизнью Солнца.

       ***

       За  последние десятилетия накоплено  большое количество данных, свидетельствующих  о том, что такие колебания  оказывают определенное влияние  на ряд геофизических процессов, а также на явления, происходящие в биосфере нашей планеты – то есть в животном и растительном мире Земли, в том числе и в организме человека.

       Так, например, многие исследователи приходят к выводу о зависимости между  уровнем солнечной активности и  различными аномалиями в процессах погоды и климата. В частности, было отмечено, что в периоды максимума солнечной активности происходит усиленный обмен воздушными массами между тропическими и полярными районами нашей планеты. Теплый воздух проникает далеко на север, холодный – на юг. Погода становится неустойчивой, а атмосферные явления приобретают иногда бурный характер.

       Длительное  сопоставление специальных карт солнечной активности, которые регулярно  составляются горной астрономической  станцией под Кисловодском, с метеорологическими данными показало, что вскоре после прохождения активных областей через центр солнечного диска в земной атмосфере нередко возникают сильные возмущения, ведущие к образованию циклонов и антициклонов и резким изменением погоды. Есть также основания предполагать, что активные явления на Солнце в какой-то мере влияют и на такие геофизические процессы, как извержения вулканов, землетрясения, колебания уровней морей и океанов, и даже на скорость суточного вращения нашей планеты.

       Однако  физический механизм, связывающий колебания солнечной активности и процессы, протекающие в атмосфере Земли и ее недрах, пока остается неясным. В этом направлении ведутся исследования.   

2.1. Солнце спокойное и активное 

Как уже говорилось, вещество Солнца вечно находится в движении - то упорядоченном, то хаотическом. Его атмосфера, столь неоднородная во многих отношениях, то и дело испытывает в разных местах весьма различные изменения температуры, плотности, давления,   напряженности   магнитного   поля.   На   первый  взгляд (особенно, если рассматривать маленькие области солнечной атмосферы, поперечником в несколько ) сотен километров) эти изменения выглядят неупорядоченными и в них совершенно невозможно разобраться. Казалось бы, все эго не имеет никакого отношения к солнечной активности. Действительно, явления, о которых идет речь, очень разнообразны, хотя бы потому, что они происходят  в разных  областях  атмосферы (Солнца, обладающих различными физическими условиями. Тем не менее, они тесно связаны друг с другом, видимо потому, что вызывает их какая-то общая причина.

Но  где лежит  граница  между солнечной  активностыо и  тем, что исследователи  Солнца привыкли называют спокойным Солнцем? И является ли эта граница стабильной?

  

,

  Обычно  солнечной активностью называют целый комплекс различных явлений, происходящих в атмосфере Солнца, которые охватывают сравнительно большие области, поперечником не менее нескольких тысяч километров, и отличаются весьма значительными изменениями со временем физических характеристик соответствующих слоев солнечной атмосферы.

    Пока  ученые интересовались средними  характеристиками того или иного слоя солнечной атмосферы и старались избегать тех областей, в которых эти характеристики резко выделялись, именно эти области и рассматривались как проявления  солнечной  активности. Но пришло время, когда исследователи Солнца заинтересовались детальным строением не только активных образований, но и «спокойных» областей Солнца. Тогда некоторые ученые стали склоняться к мнению, что никакой резкой границы между активными и спокойными областями  нашего дневного светила  вообще нет. Все Солнце бурлит, изменяется. И стоит ли вводить какое-то условное разделение, если дело только в масштабе происходящих явлений?

    Спокойное Солнце  отличается  не только масштабами явлений, по также их хаотичностью, а солнечная   активность — упорядоченностью.   В   принципе можно согласиться с тем, что граница между «спокойным» и «активным» Солнцем весьма условна. Дальнейшие   исследования   помогут   уточнить   эту   границу. Сейчас же у нас пока нет оснований отступать от класического определения солнечной активности. Единственно, в чем мы сделаем отступление, это в том, что не будем игнорировать микроструктуру активных образований на  Солнце, поскольку понимание ее природы значительно  способствует  раскрытию  сущности  этих явлений. 
 
 

 

2.2. Солнечные пятна

    Совсем  недавно, какую-нибудь сотню с небольшим  лет назад, когда говорили о солнечной активности, то подразумевали солнечные пятна. Если даже не уходить в глубь веков, можно вспомните, что еще в Древней Руси сквозь дым лесных пожаров люди видели «темные пятна, аки гвозди». Они боялись этих пятен, считали их дурным предзнаменованием. Затем в начале XVII века Галилей впервые направил телескоп на Солнце и с тех пор начались более или менее регулярные наблюдения солнечных пятен. А с середины XIX столетия эти наблюдения ведутся ежедневно, если позволяет погода.

  Больше  ста лет посвятили исследователи  Солнца изучению солнечных пятен. Но мы нисколько не погрешим против истины, если возьмемся утверждать, что и теперь среди явлений солнечной активности трудно найти более сложное и во многих отношениях непонятное образование, чем солнечное пятно. Перечень достаточно уверенных заключений о его природе невелик. Мы и начнем с этих, так сказать, азбучных истин.

         Солнечные пятна представляют собой относительно холодные места фотосферы Солнца. Температура их па 1500—2000°   ниже   температуры   окружающей   среды. Поэтому по контрасту они кажутся нам темными. Пятна имеют тарелкообразную форму с «дном» на глубине 700—1000 км.

         В начале нынешнего  столетия было обнаружено, что  солнечные пятна обладают сильным магнитным полем. Согласно теории Л. Бирмана, такое поле в состоянии уменьшить или даже подавить конвективный перенос энергии в подфотосферных слоях. Таким образом, в них создается дефицит выходящей лучистой энергии. На этом основании считают, что именно магнитное поле является виновником низкой температуры солнечных пятен, поскольку оно не позволяет переносить энергию из более низких слоев в более высокие. Напряженность магнитного поля пятен всегда больше 1500 Гс, а в большинстве случаев составляет 2000—3000 Гс. Иногда она достигает даже 5000 Гс. Размеры солнечных пятен весьма разнообразны. Они колеблются от тысячи до десятков тысяч километров.

Информация о работе Солнечная активность, атмосфера и погода