Автор работы: Пользователь скрыл имя, 30 Октября 2009 в 17:03, Не определен
Введение
Человек — существо симметричное
Безукоризненная симметрия скучна
Что такое подобие?
Загляните в словарь
Точки и линии
Наш мир в зеркале
Как отражает зеркало?
От трельяжа до радара
Легенды рудокопов
Об асимметрии
Асимметрия внутри симметрии
Асимметрия любой ценой
Заключение
Игрокам в бильярд издавна знакомо действие отражения. Их “зеркала” — это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от нее, движется обратно параллельно направлению первого удара.
Свойство отраженного луча сохранять направление при повороте углового зеркала вокруг оси находит широкое применение в технике. Так, в трехгранном зеркальном уголковом отражателе луч сохраняет постоянное направление, несмотря на весьма сильные качания зеркала. По форме такое зеркало представляет собой кубик с отрезанным уголком. И в этом случае на практике используют не три зеркала, а соответствующую стеклянную призму с зеркальными гранями.
Важной областью применения трехгранного зеркала служит уголковый отражатель (кошачий глаз, катофот) на велосипедах, мотоциклах, сигнальных предохранительных щитах, ограничителях проезжей части улицы. С какой бы стороны ни упал свет на такой отражатель, световой рефлекс всегда сохраняет направление источника света.
Большую роль трехгранные зеркальные уголковые отражатели играют в радиолокационной технике. Самолеты и крупные стальные корабли отражают луч радара. Несмотря на значительное рассеяние его, той небольшой доли отраженных радиоволн, которая возвращается к радару, обычно достаточно для распознания объекта.
Хуже обстоит дело с маленькими суденышками, сигнальными поплавками и пластиковыми парусными яхтами. У небольших предметов отражение слишком слабое. Пластиковые яхты так же “прозрачны” для радиоволн, на которых работает радарная техника, как оконные стекла для солнечного света. Поэтому парусные яхты и сигнальные буйки оснащают металлическими уголковыми отражателями. Длина граней у такого “зеркала” всего около 30 см, но этого довольно, чтобы возвращать достаточно мощное эхо.
Вернемся еще раз к угловому зеркалу из двух соединенных зеркал. Качнем его ось вправо или влево — наше изображение тоже наклонится в сторону. Мы можем даже положить его, если поместим ось зеркала горизонтально. Но, наклонив зеркало еще дальше, мы заметим, что изображение “выпрямляется”.
Угловое зеркало имеет плоскость симметрии, которая делит пополам пространство между обоими зеркалами. При соответствующей форме оно может иметь еще одну плоскость, перпендикулярную зеркалам, но она здесь не рассматривается. Нас интересует только плоскость симметрии, проходящая между зеркалами, в которой, так сказать, взаимно отражаются оба зеркала.
Каждая плоскость симметрии меняет, как нам уже известно, правое на левое (и наоборот). Но это несколько упрощенное восприятие. Если бы плоскость симметрии умела говорить, она бы заявила: “Я не меняю ни правое на левое, ни верх на низ. Я вообще не знаю, что это такое. Я лишь точка за точкой отображаю все, что находится по одну или другую сторону от меня. Если человек своей продольной осью встанет параллельно моей оси, я поменяю ему правую и левую стороны, но если тот же человек своей продольной осью расположится перпендикулярно моей оси (ибо я всегда остаюсь неизменной), то я поменяю то, что люди называют верхом и низом”. Как видим, все зависит от точки зрения.
Но в конечном итоге истинно то, что можно измерить и сосчитать. Сегодня мы не видим особого достижения в том, что Снеллиус измерил углы падения и отражения луча. Но мы не должны забывать, что ученые XVI в. подобными открытиями ломали более чем двадцативековую традицию.
Среди секретов телевидения известен трюк с уменьшением исполнителя, который на фоне всей окружающей обстановки “в натуральную величину” выглядит маленькой куколкой. Иногда зритель может видеть актера одновременно в двух масштабах: на переднем плане в обычную величину, а на заднем в уменьшенном.
Тому, кто искушен в фотографии, понятно, как достигается подобный эффект. Сначала снимается уменьшенный вариант, а потом актер играет перед экраном, на который проецируется его уменьшенное изображение.
Известный “чародей” Иохен Цмек в своей увлекательной книге “Волшебный мир магии” описывает, как подобные чудеса можно делать без фотографии. Когда уменьшенный предмет должен сам собой появиться в пространстве,., с помощью вогнутого зеркала его изображение проецируется таким образом, чтобы он казался стоящим на подставке.
Иллюзионист Александр Фюрст строил этот трюк следующим образом. Зритель видел маленькую сцену с сильно уменьшенными артистами. Чтобы спроецировать их в таком виде на экран, Фюрст использовал в своем сооружении угловое зеркало. Именно перед ним двигались артисты. Но зеркало переворачивало их на 180° и ставило тем самым “на голову”, и уже это изображение вогнутое зеркало, еще раз перевернув, отбрасывало на маленькую сцену. Непременным условием эффекта была безупречная чистота всех зеркал.
ЛЕГЕНДЫ РУДОКОПОВ
В старину рудокопы были людьми сугубо практическими. Они не забивали себе голову названиями всевозможных горных пород, которые встречали в штольне, а просто делили эти породы и минералы на полезные и бесполезные, ненужные. Нужные они извлекали из недр, из них плавили медь, свинец, серебро и другие металлы, а ненужные сваливали в отвалы.
Для полезных (на их взгляд)
минералов они подыскивали
Для бесполезных камней (как уже было сказано — на их взгляд) горняки нередко находили названия в преданиях и легендах. Так, например, произошло название руды кобальтовый блеск. Кобальтовые руды похожи на серебряные и при добыче иногда принимались за них. Когда из такой руды не удавалось выплавить серебро, считалось, что она заколдована горными духами — кобольдами.
Когда же минералогия
превратилась в науку, было открыто
великое множество пород и
минералов. И при этом все чаще
возникали трудности с
Музеи пополнялись грандиозными коллекциями камней, которые становились уже необозримыми. Не слишком помогали и химические анализы, потому что многие вещества одного и того же состава образуют подчас кристаллы совершенно различного облика. Достаточно вспомнить хотя бы снежинки.
В 1850 г. французский физик Опост Браве (1811—1863) выдвинул геометрический принцип классификации кристаллов, основанный на их внутреннем строении. По мнению Браве, мельчайший, бесконечно повторяющийся мотив узора и есть определяющий, решающий признак для классификации кристаллических веществ. Браве представлял себе в основе кристаллического вещества крошечную элементарную частицу кристалла. Сегодня со школьной скамьи мы знаем, что мир состоит из мельчайших частиц — атомов и молекул. Но Браве оперировал в своих представлениях крошечным “кирпичиком” кристалла и исследовал, каковы могли быть у него углы между ребрами и в каких соотношениях его стороны могли находиться между собой.
В кубе три ребра расположены всегда под углом 90° друг к Другу. Все стороны имеют равную длину. У кирпича углы тоже составляют 90°. Но его стороны различной длины. У снежинок, наоборот, мы не найдем угла 90°, а только 60 или 120°.
Браве установил, что
существуют 7 комбинаций ячеек с
одинаковыми или разными
В некоторых из этих 7 пространственных решеток элементарные “кирпичики” можно упаковать по-разному. Для нас, знающих сегодня о строении атома, это нетрудно представить и продемонстрировать с помощью шариков для пинг-понга. Но 125 лет назад гениальная идея Браве была новаторской и открывала новые пути в науке. Весьма вероятно, что и Браве исходил из узоров кафеля или мотивов шахматной доски.
Если мы разделим квадратные поля диагоналями, то возникает новый рисунок из квадратов, стоящих на углах. В трехмерном пространстве это соответствует кубу, разложенному на шесть пирамид. Каждая такая пирамида составляет половину октаэдра.
Те, кто когда-нибудь выращивал кристаллы поваренной соли, знают, что соль может кристаллизоваться в кубах, а может — в октаэдрах. Иными словами, экспериментальные наблюдения совпадают с теоретическими соображениями.
Испробовав возможные варианты упаковки для всех семи осевых систем, Браве вывел 14 решеток.
Рассматривая решетки Браве внимательней и пробуя мысленно построить из них кристаллы, мы, вероятно, увидим, как можно провести в них плоскости и оси симметрии. Эти возможности сразу расширятся, если мы в одной из элементарных ячеек образуем новые грани. Возьмем куб, поставим его на угол и обрежем (все так же мысленно) все углы, тогда у него образуются совершенно новые треугольные грани. А из квадратных граней возникнут восьмиугольники: тем самым появятся новые мотивы симметрии.
Анализ элементов симметрии в каждой из осевых систем кристаллических решеток приводит к возникновению 32 классов симметрии. Все многообразие минералов в природе подразделяется на основе 32 классов симметрии. Вооруженные этими знаниями, задумаемся о классификации пяти тел Платона. То, что куб, с его тремя равными осями и тремя прямыми углами, относится к кубической осевой системе (сингонии), не нуждается в доказательстве. В рамках более детального подразделения он принадлежит пентагон - тетраэдрическому классу симметрии1 . Не стану здесь приводить названий других классов из-за их сложности. Однако стоит обратить внимание на термин “тетраэдрический”, так как тетраэдр — одно из платоновых тел.
Тетраэдр можно образовать из куба. Остальные платоновы тела также относятся к кубической системе. Древние греки, надо думать, ужасно расстроились бы, знай они, что такой прозаический минерал, как серный колчедан, имеет ту же симметрию, что и их “совершенные” тела.
ОБ АССИМЕТРИИ
АССИМЕТРИЯ ВНУТРИ СИММЕТРИИ
Собственно говоря, симметрия и асимметрия должны бы взаимно исключать одна другую — как черное и белое или как день и ночь. Так оно и происходит на самом деле, пока симметрия или ее антипод рассматриваются по отношению к одному и тому же телу.
Тот факт, что растворы оптически активных веществ вращают плоскость поляризации в точности так же, как кристаллы, однозначно доказывает, что само кристаллическое состояние не может служить причиной этого явления. Ведь в растворе кристаллов нет. Но как в оптически активном кристалле, так и в растворах, обладающих этим свойством, присутствуют молекулы. Кристаллы, построенные — подобно металлам — из одних только атомов, оптически неактивны (кроме того, они непрозрачны!) Высокоупорядоченный кристалл, состоящий из ионов Na+CI- ,тоже не действует на проходящий свет. Однако кварц имеет более сложное строение, чем хлорид натрия. Кварц — это диоксид кремния, химическая формула которого Si02. Кремний, как и углерод, находится в четвертой группе периодической системы. А углерод постоянно изображают со связями: =С=
Кремний, принадлежащий
к той же группе, что и углерод,
также четырехвалентен. Химия кремния,
подобно химии углерода, весьма сложна.
Кристаллическая структура
У водо-растворимых
кристаллов органических соединений зеркальная
симметрия молекул