Симметрия

Автор работы: Пользователь скрыл имя, 30 Октября 2009 в 17:03, Не определен

Описание работы

Введение
Человек — существо симметричное
Безукоризненная симметрия скучна
Что такое подобие?
Загляните в словарь
Точки и линии
Наш мир в зеркале
Как отражает зеркало?
От трельяжа до радара
Легенды рудокопов
Об асимметрии
Асимметрия внутри симметрии
Асимметрия любой ценой
Заключение

Файлы: 1 файл

Симметрия.doc

— 131.50 Кб (Скачать файл)

Но то, что здесь  выглядит шуткой, в практической жизни  доставляет массу сложностей не только детям, но и взрослым. Нередко дети пишут некоторые буквы “навыворот”. Латинское N выглядит у них как И, а S и Z получаются наоборот. Если мы внимательно посмотрим на буквы латинского алфавита (а это ведь тоже, в сущности, плоские фигуры!), то увидим среди них симметричные и несимметричные. У таких букв, как N,S , Z, нет ни одной оси симметрии (равно как и у F, G, J, L, Р, О и R). Но N,S и Z особенно легко пишутся “наоборот”, так-так имеют центр симметрии. У остальных прописных букв есть как минимум по одной оси симметрии. Буквы А, М, Т, U, V, W и Y можно разделить пополам продольной осью симметрии. Буквы В, С, D, Е, I, К — поперечной осью симметрии. У букв Н, О и Х имеется по две взаимно перпендикулярные оси симметрии. (тот же эксперимент можно провести с любым алфавитом европейской группы).

Если вы поместите  буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсутствует вовсе, становятся “нечитабельными”.

Встречаются дети, которые  пишут левой рукой, и все буквы получаются у них в зеркальном, отраженном, виде. “Зеркальным шрифтом” написаны дневники Леонардо да Винчи. Вероятно, не существует веского основания, заставляющего нас писать буквы именно так, как это делаем мы. Вряд ли зеркальным шрифтом труднее овладеть, чем обычным.

Правописание от этого  не стало бы проще, а некоторые  слова, как, например, ОТТО, вообще не изменились бы. Существуют языки, в которых начертание знаков опирается на наличие симметрии. Так, в китайской письменности иероглиф означает именно истинную середину.

В архитектуре оси  симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется  оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля.

НАШ МИР В ЗЕРКАЛЕ

В трехмерном мире пространственных тел, где мы с вами живем, существуют плоскости симметрии. “Зеркало”  всегда имеет на одно измерение меньше, чем мир, который оно отражает. При взгляде на круглые тела сразу видно, что они имеют плоскости симметрии, но вот сколько именно — решить не всегда просто.

Поставим перед  зеркалом шар и начнем его медленно вращать: изображение в зеркале  никак не будет отличаться от оригинала, конечно в том случае, если шар  не имеет каких-либо отличительных признаков на своей поверхности. Шарик для пинг-понга обнаруживает бессчетное множество плоскостей симметрии. Возьмем нож, отрежем половину шара и поместим ее перед зеркалом. Зеркальное отражение вновь дополнит эту половинку до целого шарика.

Но если мы возьмем  глобус и рассмотрим его симметрию, учитывая нанесенные на нем географические контуры, то мы не отыщем ни одной плоскости  симметрии.

На плоскости фигурой  с бесчисленным множеством осей симметрии  был круг. Поэтому нас не должно удивлять, что в. пространстве аналогичные свойства присущи шару. Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым или полусферическим основанием, шар или сегмент шара. Или возьмем примеры из жизни: сигарета, сигара, стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца  конуса-фунтика. Совокупность элементов  симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

В целом эти представления  вполне приемлемы и по сей день. Далее греческие философы делали вывод о том, что Вселенная, несомненно, должна быть построена по образцу  математического идеала. Ясно, что  у древних греков еще не было фунтиков с мороженым! Иначе бы такой прозаический предмет, имеющий бесчисленное множество плоскостей симметрии, мог бы нарушить их стройную систему.

Если для сравнения  мы рассмотрим куб, то увидим, что он имеет девять плоскостей симметрии. Три из них делят его грани  пополам, а шесть проходят через вершины. По сравнению с шаром это, конечно, маловато.

А имеются ли тела, занимающие по числу плоскостей промежуточное  положение между шаром и кубом? Без сомнения — да. Стоит только вспомнить, что круг, в сущности, как бы состоит из многоугольников. Мы проходили это в школе при вычислении числа p . Если над каждым n - угольником мы воздвигнем n - угольную пирамиду, то сможем провести через нее n плоскостей симметрии.

Можно было бы придумать 32-гранную сигару, которая имела  бы соответствующую симметрию!

Но если мы тем не менее воспринимаем куб как более  симметричный предмет, чем пресловутый  фунтик с мороженым, то это связано  со строением поверхности. У шара поверхность всего одна. У куба их шесть — по числу граней, и  каждая грань представлена квадратом. Фунтик с мороженым состоит из двух поверхностей: круга и конусообразной оболочки.

Более двух тысячелетий (вероятно, благодаря непосредственному  восприятию) традиционно отдается предпочтение “соразмерным” геометрическим телам. Греческий философ Платон (427—347 до н. э.) открыл, что из правильных конгруэнтных плоских фигур можно построить только пять объемных тел.

Из четырех правильных (равносторонних) треугольников получается тетраэдр (четырехгранник). Из восьми правильных треугольников можно построить октаэдр (восьмигранник) и, наконец, из двадцати правильных треугольников — икосаэдр. И только из четырех, восьми или двадцати одинаковых треугольников можно получить объемное геометрическое тело. Из квадратов можно составить только одну объемную фигуру — гексаэдр (шестигранник), а из равносторонних пятиугольников — додекаэдр (двенадцатигранник).

А что в нашем  трехмерном мире полностью лишено зеркальной симметрии?

Если на плоскости  это была плоская спираль, то в  нашем мире таковыми, безусловно, будут  винтовая лестница или спиральный бур. Кроме того, существуют еще тысячи асимметричных вещей и предметов в окружающей нас жизни и технике. Как правило, винт имеет правую резьбу. Но иногда встречается и левая. Так, для большей безопасности баллоны с пропаном снабжены левой резьбой, чтобы к ним нельзя было привинтить вентиль-редуктор, предназначенный, например, для баллона с другим газом.

Между шаром и кубом, с одной стороны, и винтовой лестницей, с другой, существует еще масса  степеней симметрии. От куба можно постепенно отнимать плоскости симметрии, оси и центр, пока мы не придем к состоянию полной асимметрии.

Почти у конца этого  ряда симметрии стоим, мы, люди, с  всего единственной плоскостью симметрии, разделяющей наше тело на левую и  правую половины. Степень симметрии у нас такая же, как, например, у обычного полевого шпата (минерала, образующего вместе со слюдой и кварцем гнейс или гранит).

КАК ОТРАЖАЕТ ЗЕРКАЛО

Конечно, все мы знаем, как отражает зеркало, но, если только потребуется описать это точно, несомненно возникнут трудности. Как правило, мы довольны собой, если что-то представляем себе хотя бы “в принципе”. А подробности, которые преподаватели физики объясняли нам на доске с помощью мела и линейки, всякий нормальный школьник и студент стараются забыть, и, чем скорее, тем лучше.

Каждый ребенок, исполненный  удивления перед окружающим миром, непременно заинтересуется, каким образом  зеркало отражает его. Но взрослые обычно отвечают в подобных случаях: “Не  задавай глупых вопросов!” Человек  сникает, начинает стесняться, удивление его постепенно затухает, и он старается больше не проявлять его до конца жизни (а жаль!).

Но вспомним о словах Бертольда Бреста: “Глупых вопросов не бывает, бывают только глупые ответы”.

Конечно, людей можно  разделить на дураков и умных, на больших и маленьких, они разнятся по языку, вероисповеданию, мировоззрению. Можно представить себе и такой способ подразделения:

1) люди, которые никогда  не удивляются;

2) люди, которые удивляются, но не задумываются над удивившим их явлением;

3) люди, которые, удивившись, спрашивают “а почему?”;

4) люди, которые, удивившись, обращаются к числу и мере.

В зависимости от условий  жизни, традиций, степени образованности встречаются и все возможные  “промежуточные” ступени. Мыслители  античности и средневековья изумлялись миру и думали о его тайнах. Но им лишь изредка выпадал случай измерить какое-либо явление.

Только в эпоху  Возрождения, то есть в XVI в., люди пришли к убеждению, что измерение лучше  слепой веры или схоластических рассуждений. Этому способствовали экономические интересы, удовлетворить которые можно было только путем развития естественных наук, путем количественных измерений. (Мы видим, что, по существу, меновая стоимость “измерялась” с помощью денег.) Для XVI в. оптика была ультрасовременной наукой. Из стеклянного шара, наполненного водой, которым пользовались как фокусирующей линзой, возникло увеличительное стекло, а из него микроскоп и подзорная труба. Крупнейшей в те времена морской державе Нидерландам требовались для флота хорошие подзорные трубы, чтобы загодя рассмотреть опасный берег или вовремя уйти от врага. Оптика обеспечивала успех и надежность навигации. Поэтому именно в Нидерландах многие ученые занимались ею. Голландец Виллеброрд, Снелль ван Ройен, именовавший себя Снеллиусом (1580 - 1626), наблюдал (что, впрочем, видели и многие до него), как тонкий луч света отражается в зеркале. Он просто измерил угол падения и угол отражения луча (чего до него не делал никто) и установил закон: угол падения равен углу отражения.

Теперь, задним числом, этот закон кажется нам чем-то само собой разумеющимся. Но в те времена он имел огромное, можно сказать, мировоззренческое значение, которое будило философскую мысль вплоть до XIX века.

Закон отражения Снеллиуса  объясняет явление зеркального  отражения.

Каждой точке предмета соответствует её отражение в  зеркале, и потому в нём наш  правый глаз перемещается на левую  сторону. Вследствие этого переноса точек предметы, расположенные дальше, в зеркале тоже кажутся уменьшенными в соответствии с законами перспективы. Технически мы можем реконструировать зеркальное изображение так, словно оно расположено за поверхностью стекла. Но это только кажущееся восприятие. Не случайно животные и маленькие дети часто заглядывают за зеркало; они верят, что изображение таится сзади, словно картина, видимая за окном. Факт перестановки левого и правого правильно осознается только взрослыми.

ОТ  ТРЕЛЬЯЖА ДО РАДАРА

Должны ли мы считать, что самих себя видим только в  “зеркальном отражении” и в лучшем случае лишь на фото и кинопленке можем узнать, как выглядим “на самом деле”?

Конечно нет: достаточно зеркальное изображение вторично отразить в зеркале, чтобы увидеть свое истинное лицо. Нередко в домах  трельяжи. Они имеют одно большое  главное зеркало в центре и  два меньших зеркала по сторонам. Если такое боковое зеркало поставить под прямым углом к среднему, то можно увидеть себя именно в том виде, в каком вас видят окружающие. Зажмурьте левый глаз, и ваше отражение во втором зеркале повторит ваше движение левым глазом. Перед трельяжем вы можете выбирать, хотите ли вы увидеть себя в зеркальном или в непосредственном изображении.

Угловое зеркало с  прямым углом между составляющими  его зеркалами отличается еще  некоторыми интересными свойствами. Если смастерить его из двух маленьких  зеркал, то можно убедиться в том, что в таком зеркале с прямоугольным раствором (а сейчас речь только о нем) отраженный луч света всегда параллелен падающему лучу. Это очень важное свойство. Но не единственное! При повороте углового зеркала вокруг оси, соединяющей зеркала (в определенных пределах), отраженный луч не изменит своего направления.

В технике обычно не составляют зеркала, а используют прямоугольную  призму, у которой соответствующие  грани обеспечивают зеркальный ход  лучей.

Прямоугольные призмы, как бы “складывающие” ход луча “гармошкой”, сохраняя его необходимую длину, заданную фокусным расстоянием линзы, позволяют уменьшать габариты оптических приборов. В призматических биноклях лучи света при помощи таких приборов обращаются на 180°.

На старинных картинах можно видеть капитанов и полководцев  с непомерно длинными подзорными трубами. Благодаря угловым зеркалам старинные подзорные трубы превратились в современные бинокли.

Информация о работе Симметрия