Развитие взглядов на природу теплоты

Автор работы: Пользователь скрыл имя, 28 Ноября 2011 в 18:55, реферат

Описание работы

Тепловыми явлениями ученые и философы начали интересоваться еще в древности. Однако ничего кроме самых общих предположений об этих явлениях, носивших обычно самый фантастический характер, ни в древности, ни в средние века высказано не было. По-настоящему учение о тепловых явлениях начало развиваться только в XVIII в. По-настоящему учение о тепловых явлениях начало развиваться только в XVIII в. после изобретения первого теплоизмерительного прибора - термометра.

Файлы: 1 файл

чистое решение ксе.docx

— 55.06 Кб (Скачать файл)

Вопрос  №1.Развитие взглядов на природу теплоты.

Тепловыми явлениями ученые и философы начали интересоваться еще в древности. Однако ничего кроме самых общих  предположений об этих явлениях, носивших обычно самый фантастический характер, ни в древности, ни в средние века высказано не было. По-настоящему учение о тепловых явлениях начало развиваться  только в XVIII в. По-настоящему учение о  тепловых явлениях начало развиваться  только в XVIII в. после изобретения  первого теплоизмерительного прибора - термометра.

Широко  поддерживаемой среди физиков того времени была теория теплорода.

Румфорд сделал крупный шаг вперед, предположив, что теплота — это некое свойство самого вещества, а не что-то добавляемое к нему, он высказал предположение, что теплота это движение. Дэви был смелее Румфорда и высказал предположение, что теплота — это «своеобразное, вероятно, колебательное движение мельчайших частиц тел».,

Закон Дюлонга и Пти, согласно которому теплоемкость СV всех твердых тел при достаточно высокой температуре есть величина постоянная, не зависящая от температуры и составляющая около 3R 25 Дж/( моль К) - значение Дюлога-Пти, был выведен в 1818г.

В начале XIX в. была создана теория теплопроводности французским ученым Жаном Батистом Фурье (1768—1830). Итогом его исследований явилась монография «Аналитическая теория теплоты», вышедшая в свет в 1822г. Что же касается взглядов Фурье на природу теплоты, то признавал теорию теплорода.

Значимый  вклад в термодинамику внес Карно, его сочинения легли в основу термодинамики, также он ввел метод  циклов.Второе начало термодинамики было высказано Клаузиусом («Это предположение, выставленное мною в качестве принципа, — пишет Клаузиус в своем обобщающем труде, — встретило много возражений, и мне пришлось его неоднократно защищать».) и развито в трудах Томсона.

Дальнейшее  развитие теплофизики было бы невозможно без работ Больцмана, Максвелла, Гей-Люсака, Джоуля, Авогадро, Дальтона, Клапейрона, Берцелиуса, Бойля, Мариотта, Гассенди, Эндрюса, Ван-дер-Ваальса, Гесса и др.

Нельзя  объять необъятное, поэтому в своем реферате я остановлюсь подробно только на работах некоторых из этих ученых. 

1. Изобретение термометра.

     История изобретения термометра довольно длинная. Она начинается с изобретения  Галилеем прибора, который можно  назвать термоскопом. Прибор Галилея  состоял из тонкой стеклянной трубки, один конец которой заканчивался шариком Открытый конец трубки опускался  в сосуд с водой, которая заполняла  и часть трубки. Когда воздух в  шарике нагревался или охлаждался, столбик воды в трубке опускался  или поднимался. После Галилея  многие ученые конструировали подобного  рода при боры, постепенно совершенствуя их. Стеклянные трубки стали снабжать шкалой, возникло представление о существовании постоянных температурных точек и т. д. Однако первые термометры были еще очень несовершенны. В их конструкциях не было единообразия, каждый изобретатель выбирал свои основные температурные точки и шкалы. Сравнивать показания различных термометров было практически нельзя.

     Впервые практически пригодные термометры, дающие одинаковые показания, были изготовлены  голландским мастером - стеклодувомвом Фаренгейтом в начале XVIII в. Термометры Фаренгейта имел современный вид. Фаренгейт использовал спирт или ртуть. В его шкале, которая в последующем получила распространение, за одну основную температурную точку была выбрана температура смеси воды, льда и поваренной соли, равная 0°. За вторую температурную точку он взял температуру смеси льда и воды, которую принял за 32°. Температура человеческого тела по шкале Фаренгейта равна 96°. Эту температуру он принял за третью основную температурную точку. При такой шкале температура кипения воды при нормальном атмосферном давлении оказалась равной 212°.

     Новый способ изготовления и калибровки термометров  предложил француз Реомюр в 1730 г. Он принял одну постоянную точку —  температуру таяния льда, а за один градус считал температуру, соответствующую  расширению спирта на одну тысячную долю своего объема. Определяя затем температуру  кипения воды, он получил ее равной 80°. Эта шкала температур: 0° —  температура таяния льда и 80° —  температура кипения воды при  нормальном атмосферном давлении —  стала называться шкалой Реомюра.

     В 1742 г. шведский астроном Цельсий предложил  стоградусную шкалу температур, по которой за 0° принималась температура  кипения воды, а за 100° — температура  таяния льда. Современная стоградусная шкала, носящая название шкалы Цельсия, была введена несколько позже. В XVIII в. предлагались и другие температурные  шкалы, но они не удержались в процессе развития термометрии, Интересно отметить, что появление и усовершенствование термометра в значительной степени  было обусловлено его применением  для метеорологичеких исследований Первоначально термометр вместе с барометром и гигрометром часто рассматривали как метеорологический прибор. Так, например, в «Экспериментальной физике» X. Вольфа описание термометра помещено в части, носящей Название «Об опытах и наблюдениях около перемен атмосферы». Термометр, конечно, нашел и другие применения. Его стали использовать в быту, медицине, для физических исследований и т. д. Однако еще в 70-х годах в немецком изданий «Элементов химии» Бургаве автор писал, I что термометр «является, как известно физико-математическим прибором, принадлежащим к аэрометрии». (Изобретение термометра дало возможность заняться количественными исследованиями тепловых явлений.)

     Вплоть  до середины XIX столетия многие считали  теплоту своего рода материальной субстанцией, добавляемой к веществу: считалось, что нагревание тела связано с  добавлением этой субстанции, известной  под названием теплорода. Дальтон  в 1802 г. рисовал схематическое изображение  атомов, окружая их атмосферой из теплоты. Хотя это было примитивное представление, его можно было подтвердить экспериментально; на нем основывается составление  уравнений теплового баланса. Карно (1796—1832), трактат которого «О движущей силе огня» до сих пор образует одну из основ физической науки, верил  в теплород, хотя впоследствии пересмотрел  свои представления. Родственным теплороду  был флогистон; как полагали, он представляет собой субстанцию, отдаваемую веществом  в процессе горения. Флогистон в  отличие от теплорода можно было измерять, но возникла трудность, заключавшаяся  в том, что вес флогистона оказывался то отрицательным, то положительным. Теория флогистона была явно противоречивой и продолжала существовать только потому, что никто не мог придумать  ничего лучшего. 
 
 

     2. Опыты Румфорда и Дэви, Блэка. Идеи Рихмана.

     Первый  шаг сделал Румфорд (1753—1814) в конце XVIII столетия. Идея опыта возникла опять-таки из самого обычного наблюдения, которое, наверное, делали многие до Румфорда, но не придавали ему особого значения. Речь идет о теплоте, возникающей при сверлении отверстия в куске металла. Румфорд, в частности, занимался сверлением пушечных стволов в военной мастерской в Мюнхене и заметил, что температура металла очень сильно повышается. Откуда бралась теплота? Источников теплорода, очевидно, не было.

     Одно  из предположений заключалось в  том, что мелкие металлические стружки, образующиеся при сверлении, обладали меньшим сродством к теплороду, чем массивный металл, в котором  сверлили отверстие. Таким образом, при сверлении металла выделяется теплород, в результате чего происходит повышение температуры. Румфорд придумал простой способ проверить это предположение. Если взять тупое сверло, рассуждал он, то стружек образуется мало и повышение температуры должно быть меньше. Румфорд проделал опыт: температура поднялась еще выше. Очевидно, теория теплорода не годилась.

     Румфорд вспомнил более ранние теории Бойля и других ученых, согласно которым теплота связана с колебаниями частиц. Дальнейшие опыты убедили его в том, что теплота может создаваться без ограничений, и в конечном счете он высказал смелое утверждение, что «теплота есть ДВИЖЕНИЕ» (это слово выделил сам Румфорд).

     Это утверждение часто приводят как  свидетельство большой проницательности Румфорда. Может быть, это и так, но оно свидетельствует также о большой осторожности. Какого рода движение представляет собой теплота? Как оно получается? Что происходит с этим движением, когда тело остывает? Ни одного из этих вопросов Румфорд не поставил и, естественно, не дал на них ответа.

     Но  Румфорд сделал крупный шаг вперед, предположив, что теплота — это некое свойство самого вещества, а не что-то добавляемое к нему.

     Дэви (1778—1829) произвел в Лондоне опыт, условия которого были в большей степени подчинены воле экспериментатора. Он сложил вместе два куска льда, поместил их в сосуд, из которого был выкачан воздух, и привел их но взаимное трение при помощи часового механизма. Выделилось достаточное количество тепла, чтобы расплавить часть льда, и эта теплота не могла взяться из теплорода воздуха.

     Так был сделан первый важнейший шаг: было установлено, что теплота есть форма кинетической энергии. Следующий  необходимый шаг состоял в  том, чтобы выяснить, существует ли какое-нибудь количественное соотношение  между теплотой и механической энергией. Для проведения таких исследований требовалось, однако, значительно больше информации. Нужно было знать тепловые свойства материалов, в частности  знать, насколько повышается температура  различных материалов при подведении к ним тепла. Это свойство выражается так называемой удельной теплоемкостью  — количеством тепла, которое  требуется, чтобы повысить температуру единицы массы на один градус.

     Исследования  по калориметрии начались еще тогда, когда не было выяснено, что теплота  имеет две меры: температуру и  количество теплоты, еще не существовало понятие теплоемкости и т. д. Именно в процессе развития прежде всего калориметрических исследований и сформировались эти основные понятия теплофизики. Первые исследования по калориметрии, давшие существенные результаты, принадлежат петербургскому академику Георгу Рихману (1711 — 1753). В 1744 г. Рихман установил формулу для температуры смеси. Он полагал как само собой разумеющееся, что если теплота, распределенная в какой-либо массе жидкости, затем распределяется в такой же жидкости, имеющей массу в k раз большую, то температура при этом уменьшается в k раз. Из этого предположения следует, что если имеется масса m жидкости, в которой распределена теплота температуры t, а затем эта же теплота распределяется в массе т' такой же жидкости, то температура последней равна:

     V = mt/ т'.

     Хотя  Рихман уже интуитивно чувствует, что для тепловых явлений следует различать две величины — температуру и количество теплоты, тем не менее он еще не разделяет их. Рихман использовал термин «теплота» и в смысле температуры, и в смысле количества теплоты, хотя употреблял и термин «температура».

     Вопрос  о распределении теплоты между  неоднородными телами был более  сложным. Опыты по определению температуры  смеси двух разных жидкостей проводились  еще до исследования Рихма на.

     Так, например, Бургаве измерял температуру смеси воды и ртути, имеющих первоначально разные температуры. Но как в общем случае распределяется теплота при тепловом контакте различных тел, было еше не ясно. Высказывались некоторые догадки, предполагалось, что теплота распределяется равномерно объему. Однако вскоре выяснилось, что этот вопрос решается так просто. Исследования привели к возникновению понятия удельной теплоемкости и выявили, что эта величина не имеет простой связи ни с каким свойством того или иного вещества. Были измерены удельные теплоемкости ряда веществ.

     Первые  измерения удельной теплоемкости произвел Блэк (1728—1799); его работа опередила эксперименты Румфорда и Дэви, но так как Блэк излагал свои идеи главным образом на лекциях, они были полностью опубликованы лишь после его смерти. Дэви был смелее Румфорда и высказал предположение, что теплота — это «своеобразное, вероятно, колебательное движение мельчайших частиц тел». Его ответ был правильным. Насколько редко встречаются такие люди! Блэк со своим сотрудником Мартином налил равные объемы воды и ртути в одинаковые сосуды, поместил их на равных расстояниях от огня и наблюдал за скоростью повышения температуры воды и ртути. Блэк был в полной уверенности, что температура ртути будет повышаться медленнее, чем воды, так как масса ртути в 13,5 раза больше. Представьте себе его удивление, когда он увидел, что температура ртути повышалась вдвое быстрее. Блэк обнаружил, что ртуть имеет малую удельную теплоемкость — примерно 1/27, или 0,037 удельной теплоемкости воды; как мы теперь знаем, это значение равно 0,033.

     Важным  было открытие теплоты плавления. Оно  было сделано английским ученым Джозефом Блэком (1728—1799). Еще в 50-х годах он установил, что если взять определенную массу льда при температуре его плавления и такую же массу воды при температуре примерно 80°С, то в результате смешивания весь лед растает, а температура воды станет равной первоначальной температуре льда (т. е. 0°С). Отсюда он сделал вывод, что на процесс таяния льда затрачивается определенное количество теплоты, хотя температура его при этом не изменяется. Теплота поглощается водой, образовав шейся из льда. Эта теплота была названа Блэком «скрытой теплотой». Блэк также открыл существование «скрытой теплоты парообразования». 

     Проводились исследования распределения теплоты  между телами из различных веществ при тепловом контакте. В результате воз никло понятие о теплоемкости и удельной теплоемкости. Были проведены измерения удельных теплоемкостей ряда твердых и жидких тел. При этом совершенствовалась техника калориметрических исследований, были сконструированы простейшие калориметры Постепенно выяснялся и вопрос о мерах теплоты и о различии понятий температуры и количества теплоты. Блэк уже в 1753 г. в своих лекциях специально подчеркивал:

     «Когда  мы говорим о распределении теплоты, всегда нужно различать количество теплоты и силу теплоты и не смешивать эти две величины» 

     Развитие  калориметрических исследований было связано с представлением о сохранении количества теплоты при ее распределении  между телами (это представление  использовали и при исследовании теплопроводности). Постепенно физики и химики привыкали пользоваться уравнением теплового баланса, на основе которого производятся все калориметрические  расчеты. Уравнение теплового баланса  для простейшего случая использовал  уже Рихман. В более общей форме им пользовался Блэк. Обсуждая опыт смешения одинаковых масс ртути и воды, Блэк писал:

     «...когда  нагретую ртуть смешивают с нагретой водой, то температура смеси падает до 120° вместо 125° (125° — средняя  температура; вода берется при температуре 100°, а ртуть при температуре 150°  Фаренгейта). Ртуть, таким образом, охлаждается  на 30°, а вода нагревается на 20°, однако количество теплоты, которое получила вода» равно количеству теплоты, которое потеряла ртуть».

     Можно считать, что к 80-м годам XVIII в. сложились  основные понятия учения о теплоте. В вышедшем в 1783 г. сочинении «Мемуар о теплоте» французских ученых Антуана Лавуазье (1743—1794) и Пьера Лапласа (1749—1827), подводящем как бы итог развития учения о теплоте, понятия температуры, количества теплоты, теплоемкости и т. д. считаются уже установленными.

Информация о работе Развитие взглядов на природу теплоты