Контрольная работа по концепции современного естествознания

Автор работы: Пользователь скрыл имя, 07 Сентября 2011 в 17:22, контрольная работа

Описание работы

Что называют парадигмой в науке?
Какой новый вклад в картину мира вносит электромагнитная теория?
Современные представления о пространстве и времени.
Что такое пустота или вакуум, как менялись взгляды на него?
Развитие учения о составе вещества.
Что выражает первый закон термодинамики?
Проблемы происхождения и развития земли.
Какие гипотезы происхождения живой материи вам известны?
Важнейшие достижения биологии последних десятилетий.
Этические проблемы естествознания.

Содержание работы

Вопрос 5: Что называют парадигмой в науке?

Вопрос 11: Какой новый вклад в картину мира вносит электромагнитная теория?

Вопрос 18: Современные представления о пространстве и времени.

Вопрос 25: Что такое пустота или вакуум, как менялись взгляды на него?

Вопрос 39: Развитие учения о составе вещества.

Вопрос 44: Что выражает первый закон термодинамики?

Вопрос 51: Проблемы происхождения и развития земли.

Вопрос 53: Какие гипотезы происхождения живой материи вам известны?

Вопрос 59: Важнейшие достижения биологии последних десятилетий.

Вопрос 68: Этические проблемы естествознания.

Список используемой литературы.

Файлы: 1 файл

КСЕ.doc

— 200.00 Кб (Скачать файл)

       1. Концепция креационизма полагает, что жизнь была сотворена Богом.  Эта концепция возникла в рамках  религиозного мировоззрения. Она утверждает, что жизнь такова, какова она есть, потому что такой ее сотворил Бог. В рамках этой концепции практически снимается вопрос о научном решении проблемы происхождения и сущности жизни.

       Основные  концепции появляются позже, однако, вплоть до ХХ века ни одна из них не смогла сформировать единую биологическую картину и дать приемлемое объяснение происхождению земли.

       2. Теория самопроизвольного (спонтанного) зарождения жизни была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму. Этой теории придерживался Аристотель, согласно взглядам которого определенные «частицы» вещества содержат некое «активное начало», способное при подходящих условиях создать живой организм. Эта точка зрения просуществовала вплоть до середины XIX века. Лишь  в 1860 г., благодаря опытам Луи Пастера, который продемонстрировал, что живые существа (материи) способны поселяться везде на неживых материалах и в подходящих условиях развиваться, но высокая температура может уничтожить все формы живого, теория самопроизвольного зарождения жизни была практически опровергнута. Вопрос о том, откуда взялся первый живой организм в рамках этой теории остался открытым. ¹

       3. Теория панспермии – внеземного  происхождения жизни начинает  свое существование в 60-х гг. XIX в. с работ немецкого ученого Г. Рихтера, а в 1908 г. поддерживается теорией шведского химика Сванте Аррениуса. Теория утверждает, что жизнь могла возникнуть в разное время в разных частях Галактики или Вселенной и началась на Земле после того, как в виде зародышей попала из космоса на планету. Согласно гипотезе современных ученых Ф. Хойла и Викрамасингха наша планета ежегодно получает 10¹³ спор как остаток кометного материала, рассеянного в Солнечной системе, мы и сейчас получаем из космоса живые организмы в виде вирусов и бактерий. Из этого следует, что кометы или метеориты могли принести жизни на Землю. 

       4. Теория биохимической эволюции рассматривает возникновение жизни из неживой материи на нашей планете в ходе процесса самоорганизации, полагая, что возникновение жизни содержало элемент случайности, но в своей основе было закономерным. Предполагается, что появление жизни произошло в ходе эволюционного процесса. Когда химическая эволюция после одной из точек бифуркации привела к появлению живого организма и началу биологической эволюции.

       5. В 1923 г. российский ученый Александр Иванович Опарин предположил, что в условиях первобытной Земли органические вещества возникали из простейших соединений – аммиака, метана, водорода и воды. Энергия, необходимая для подобных превращений, могла быть получена или от ультрафиолетового излучения, или от частых грозовых электрических разрядов – молний. Возможно, эти органические вещества постепенно накапливались в древнем океане, образуя «первичный бульон», в котором и зародилась жизнь.

       По  гипотезе А.И. Опарина, в «первичном бульоне» длинные нитеобразные молекулы белков могли сворачиваться в  шарики, «склеиваться» друг с другом, укрупняясь. Благодаря этому они  становились устойчивыми к разрушающему действию прибоя и ультрафиолетового излучения. Происходило нечто подобное тому, что можно наблюдать, вылив на блюдце ртуть из разбитого градусника: рассыпавшаяся на множество мелких капелек ртуть постепенно собирается в капли чуть побольше, а потом  - в один крупный шарик. Белковые «шарики» в «первичном бульоне» притягивали к себе, связывали молекулы воды, а также жиров. Жиры оседали на поверхности белковых тел, обволакивая их слоем, структура которого отдаленно напоминала клеточную мембрану. Этот процесс Опарин назвал коацервацией, а получившиеся тела – коацерватными каплями, или просто коацерватами. С течением времени коацерваты поглощали из окружающего их раствора все новые порции вещества, их структура усложнялась до тех пор, пока они не превратились в очень примитивные, но уже живые клетки.

       Слабой  стороной теории Опарина является допущение  возможности самовоспроизведения  коацерватных структур в отсутствии молекулярных систем с функциями  генетического кода. Существование  таких систем объяснялось наличием у них свойств открытых микросистем, выживающих за счет вовлечения в них ферментов, находящихся в готовом виде в окружающей среде. Таким образом, теория Опарина пока не может решить проблему перехода от химической эволюции к биологической.

       6. В 1953 г. современный американский ученый Стэнли Ллойд Миллер экспериментально воспроизвел условия первобытной Земли в своей лаборатории. В сосуд он налил подогретую воду, а оставшееся пространство вместо воздуха заполнил теми газами, которые слагали древнюю атмосферу. Электрические разряды напряжением 1000 вольт, проходившие через смесь, играли роль миниатюрных молний. Через некоторое время в сосуде образовались сложные органические вещества, в том числе аминокислоты и сахара. Последователям Миллера удалось больше – они синтезировали подобным образом простые белки. Однако многие современные ученые полагают, что древняя атмосфера состояла не из метана, водорода, аммиака, а из азота и углекислого газа. Это ставит под сомнение гипотезу Стэнли Миллера.¹

       7. Сторонники гипотезы генобиоза,  ярким представителем которой был английский биолог Холдейн, считают, что первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену, способная к саморепродукции. К 1980 г. благодаря работам по молекулярной биологии генобиотическая гипотеза оказалась доминирующей, хотя в ее истолковании не было единства.²                                                                                                                                                                                                                                                                                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

_______________________________

¹ Аксенова М.Д. «Энциклопедия для детей. Т. 2. Биология» - М.: Аванта +. С. 138.

² Тимофеева  С.С., Медведева С.А, Ларионова Е.Ю. «Основы современного естествознания и экологии» - Ростов н/Д: «Феникс», 2004 – с.126.

       Важнейшие достижения биологии последних десятилетий.

       Ведущим фактором прогресса в развитии человечества является наука. Конец ХХ века ознаменовался целым рядом крупных открытий в биологии.

       Еще в 1968 году академик Г. М. Франк, один из организаторов института биофизики  АН СССР, писал о наступлении эры  машинной биологии, в которой ключевую роль в анализе изображения биологических объектов будут играть вычислительные машины, а его ученик член-корреспондент Российской академии наук Г. Р. Иваницкий осуществил ввод информации о микрообъекте в компьютер. Сегодня существует новое научное направление – компьютерная биология.

       Развитие  новых оптических и компьютерных технологий, получение и обработка  изображения (цифровые фото- и видеокамеры, лазерные сканеры) позволили визуализировать  и осуществлять морфологический  анализ разнообразных биологических  объектов. Сегодня компьютерная биология решает такие задачи, как диагностика патологий, вопросы систематического сходства биологических видов, генетического разнообразия и даже проблемы эволюции, которые не могут быть решены другими методами.

       Перенос отдельных генов из одного организма в другой был разработан американскими учеными С. Коэном и Г. Бойером в 1973 году.  
Результаты работы С. Коэна и Г. Бойера быстро стали достоянием ученых всего мира. Начались интенсивные исследования в этой новой области биологии, и очень быстро эта стратегия обогатилась новыми методами выделения генов, эффективными методами их переноса, способами контроля над их экспрессией (функционированием) в чужих организмах.

       В 1978 году ученые фирмы Genentech выделили фрагмент гена (небольшой участок нуклеотидных последовательностей ДНК), который кодировал (определял синтез) человеческий инсулин. Этот ген был перенесен в генетическую систему клетки бактерии кишечной палочки (Esherichia coli). Эта процедура, проведенная в лаборатории биологов, превратила клетки бактерий в своеобразные биологические фабрики, которые производили человеческий инсулин (инсулин – это гормон белковой природы, структура которого записана в последовательности ДНК-гене инсулина). При инсулинозависимом диабете синтез инсулина в организме больного отсутствует. Для восполнения его приходится вводить в организм таких больных. Напомним, что большому количеству людей, страдающих диабетом, приходится пользоваться свиным инсулином, который может вызывать аллергическую реакцию. Так вот, биологи “научили” или “заставили” (что в принципе одно и тоже) кишечную палочку производить человеческий инсулин. Это воистину грандиозно, так как, единожды разработав метод, можно с помощью E. coli или других бактерий производить белки любой природы.

       Работа  не просто открывала новые горизонты практического применения биологических знаний, она показала принципиально новые возможности биологических систем и подходы к их использованию.

       Середина  и вторая половина XX столетия ознаменовались значительным уменьшением частоты и даже полной ликвидацией ряда инфекционных заболеваний, снижением младенческой смертности, увеличением средней продолжительности жизни. В развитых странах мира центр внимания служб здравоохранения был перемещен на борьбу с хронической патологией человека, болезнями сердечно-сосудистой системы, онкологическими заболеваниями.

       Стало очевидным, что прогресс в области  медицинской науки и практики тесно связан с развитием общей  и медицинской генетики, биотехнологии. Потрясающие достижения генетики позволили выйти на молекулярный уровень познания генетических структур организма, и наследования, вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

       Получила  развитие клиническая генетика –  одно из важнейших направлений современной медицины, приобретающих реальное профилактическое значение. Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза. 
 
 
 
 
 
 
 
 
 
 

Этические проблемы естествознания.

       Типичная  для современной эпохи ситуация возникающих кризисов, последствия  которых отзываются на судьбах крупных  масс населения и представляют собой  порой опасности подлинно глобального характера, налагают особую ответственность на науку как силу, участвующую в возникновении подобных ситуаций, и на творцов этой науки, т.е. на ученых.

       Обвинения в адрес науки, а, следовательно, и ученых, приходится слышать нередко, и это естественно. Ведь значительная часть кризисов возникает как следствие применения современной технологии в базирующейся на ней экономике. Стало трюизмом, что прогресс техники, ее развитие и новые формы имеют своей почвой достижения пауки. Наука стала не просто одной из производительных сил национальных хозяйств и мирового хозяйства в целом, она, по существу, является едва ли не самой мощной из этих сил, если не непосредственно, то, во всяком случае, косвенно, как универсальный источник новых достижений, становящихся основой развития и технического прогресса.

       Причины возникающих в наше время кризисов наряду с несовершенством различных  экономических и социальных структур в большом числе случаев кроются  в количественной и качественной неоднозначности результатов технического прогресса, который открывает возможность как для разумного использования достижений техники, так и для применения во вред человеку (атомная промышленность и радиационная угроза; неудержимый рост масштабов использования природных ресурсов; возрастание мощности средств массовой информации; поток новых лекарственных веществ, часто с далеко не изученными действиями и т.д.).

       Усматривая  прямую или хотя бы косвенную первопричину возникновения тревожных ситуаций в успехах и достижениях науки, приходится считать, что наука несет определенную ответственность за складывающиеся условия, хотя не она, конечно, является главной их причиной. А отсюда с очевидностью следует, что особая ответственность ложится и на творцов науки, на ученых, своими трудами прокладывающих путь к возникновению отрицательных последствий.

Информация о работе Контрольная работа по концепции современного естествознания