Концепции современного естествознания

Автор работы: Пользователь скрыл имя, 08 Февраля 2010 в 23:30, Не определен

Описание работы

Лекции

Файлы: 1 файл

В.М. Найдыш - Концепции современного естествознания.doc

— 487.00 Кб (Скачать файл)

______________________________________

1 Хакен Г Информация и самоорганизация Макроскопический подход к сложным системам М. 1991 С. 28—29. См. также Николис Г., Пригожин И. Познание сложного. М. 1990; Пригожин И., Стенгерс И. Время, Хаос и Квант. М , 1994; и др.

422

динамики, запас  энергии во Вселенной иссякает, а  вся Вселенная неизбежно приближается к “тепловой смерти”. Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

Вместе с тем уже во второй половине XIX в. и особенно в XX в. биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к понижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее в противоположном направлении — от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. И только с переходом естествознания к изучению открытых систем появилась такая возможность.

Открытые системы  — это такие системы, которые  поддерживаются в определенном состоянии  за счет непрерывного притока извне  вещества, энергии или информации. Постоянный приток вещества, энергии  или информации является необходимым  условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы — это системы необратимые; в них важным оказывается фактор времени.

В открытых системах ключевую роль — наряду с закономерным и необходимым — могут играть случайные факторы, флуктуационные процессы. Иногда флуктуация может  стать настолько сильной, что  существовавшая организация разрушается.

15.2.2. Нелинейность

Но если большинство  систем Вселенной носит открытый характер, то это значит, что во Вселенной  доминируют не стабильность и равновесие, а неустойчивость и неравновесность. Неравновесность,

423

в свою очередь, порождает избирательность системы, ее необычные реакции на внешние воздействия среды. Неравновесные системы имеют способность воспринимать различия во внешней среде и “учитывать” их в своем функционировании. Так, некоторые более слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы. Иначе говоря, на нелинейные системы не распространяется принцип суперпозиции: здесь возможны ситуации, когда совместные действия причин А и В вызывают эффекты, которые не имеют ничего общего с результатами воздействия А и В по отдельности.

Процессы, происходящие в нелинейных системах, часто носят  пороговый характер — при плавном  изменении внешних условий поведение  системы изменяется скачком. Другими  словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению

Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обусловливают изменения в самой этой системе (например, в ходе химической реакции или какою-то другою процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.

15.2.3. Диссипативностъ

Открытые неравновесные  системы, активно взаимодействующие  с внешней средой, могут приобретать  особое динамическое состояние —  диссипативность, которую можно  определить как качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Неравновесное протекание множества микропроцессов приобретает некоторую интегративную результирующую) на макроуровне, которая качественно отличается оттого, что происходит с каждым отдельным ее микроэлементом. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, совершаться переходы от хаоса и беспорядка

424

к порядку и  организации, возникать новые динамические состояния материи.

Диссипативность проявляется в различных формах: в способности “забывать” детали некоторых внешних воздействий, в “естественном отборе” среди  множества микропроцессов, разрушающем  то, что не отвечает общей тенденции  развития; в когерентности (согласованности) микропроцессов, устанавливающей их некий общий темп развития, и др.

Понятие диссипативности  тесно связано с понятием параметров порядка. Самоорганизующиеся системы  — это обычно очень сложные  открытые системы, которые характеризуются  огромным числом степеней свободы. Однако далеко не все степени свободы системы одинаково важны для ее функционирования. С течением времени в системе выделяется небольшое количество ведущих, определяющих степеней свободы, к которым “подстраиваются” остальные. Такие основные степени свободы системы получили название параметров порядка.

В процессе самоорганизации  возникает множество новых свойств  и состояний. Очень важно, что  обычно соотношения, связывающие параметры  порядка, намного проще, чем математические модели, детально описывающие всю новую систему. Это связано с тем, что параметры порядка отражают содержание оснований неравновесной системы. Поэтому задача определения параметров порядка — одна из важнейших при конкретном моделировании самоорганизующихся систем.

15.3. Закономерности самоорганизации

Главная идея синергетики  — это идея о принципиальной возможности  спонтанного возникновения порядка  и организации из беспорядка и  хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации  является образование петли положительной обратной связи системы и среды. При этом система начинает самоорганизовываться и противостоит тенденции ее разрушения средой. Например, в химии такое явление называют автокатализом. В неорганической химии автокаталитические реакции довольно редки, но, как показали исследования последних десятилетий в области молекулярной биологии, петли положительной обратной связи (вместе с другими связями — взаимный катализ, отрицательная обратная связь и др.) составляют саму основу жизни (см. 13.2.2).

Становление самоорганизации  во многом определяется характером взаимодействия случайных и необходимых факторов системы и

425

ее среды. Система  самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты — точки  бифуркации. Вблизи точек бифуркации в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает.

В переломный момент самоорганизации принципиально  неизвестно, в каком направлении  будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации (фазовые переходы и диссипативные структуры — лазерные пучки, неустойчивости плазмы, флаттер, химические волны, структуры в жидкостях и др.). В точке бифуркации система как бы “колеблется” перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация (момент случайности) может послужить началом эволюции (организации) системы в некотором определенном (и часто неожиданном или просто маловероятном) направлении, одновременно отсекая при этом возможности развития в других направлениях.

Как выясняется, переход от Хаоса к Порядку  вполне поддается математическому  моделированию. И более того, в  природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых различных сферах действительности (в природе и обществе — его истории, экономике, демографических процессах, духовной культуре и др.) подчиняются подчас одному и тому же математическому сценарию'.

Синергетика убедительно  показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История  развития природы — это история  образования все более и более  сложных нелинейных систем. Такие  системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации — от низших и простейших к высшим и сложнейшим (человек, общество, культура).

________________________________

1 См.: Капица С.П.. Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997.

426 
 
 

16. ГЛОБАЛЬНЫЙ ЭВОЛЮЦИОНИЗМ

Одна из важнейших  идей европейской цивилизации —  идея развития мира. В своих простейших и неразвитых формах (преформизм, эпигенез, кантонская космогония) она начала проникать в естествознание еще в XVIII в. (см. 7.2 и 7.4). Но уже XIX в. по праву может быть назван веком эволюции. Сначала в геологии, затем биологии и социологии теоретическому моделированию развивающихся объектов стали уделять все большее и большее внимание.

Но в науках физико-химического цикла идея развития пробивала себе дорогу очень сложно. Вплоть до второй половины XX в. в ней  господствовала исходная абстракция закрытой обратимой системы, в которой фактор времени не играет роли. Даже переход от классической ньютоновской физики к неклассической (релятивистской и квантовой) в этом отношении ничего не изменил. Правда, в классической термодинамике был сделан некоторый робкий прорыв — введено понятие энтропии и представление о необратимых процессах, зависящих от времени. Этим самым в физические науки была введена “стрела времени”. Но, в конечном счете, и классическая термодинамика изучала лишь закрытые равновесные системы, а неравновесные процессы рассматривались как возмущения, второстепенные отклонения, которыми следует пренебречь в окончательном описании познаваемого объекта.

Проникновение идеи развития в геологию, биологию, социологию, гуманитарные науки в XIX — первой половине XX в. происходило  независимо в каждой из этих отраслей познания. Философский принцип развития мира (природы, общества, человека) не имел общего, стержневого для всего естествознания (а также для всей науки) выражения. В каждой отрасли естествознания он имел свои (независимые от другой отрасли) формы теоретико-методологической конкретизации.

Только к концу XX в. естествознание нашло теоретические  и методологические средства для  создания единой модели универсальной  эволюции, выявления общих законов  природы, связывающих в единое целое происхождение Вселенной (космогенез), возникновение Солнечной системы и нашей планеты Земля (геогенез), возникновение жизни (биогенез) и, наконец, возникновение человека и общества (антропосоциогенез). Такой моделью является концепция

427

глобального эволюционизма. В этой концепции Вселенная предстает как развивающееся во времени природное целое, а вся история Вселенной от Большого Взрыва до возникновения человечества рассматривается как единый процесс, в котором космический, химический, биологический и социальный типы эволюции преемственно и генетически связаны между собой. Космохимия, геохимия, биохимия отражают здесь фундаментальные переходы в эволюции молекулярных систем и неизбежности их превращения в органическую материю.

В концепции  глобального эволюционизма подчеркивается важнейшая закономерность — направленность развития мирового целого на повышение своей структурной организации. Вся история Вселенной — от момента сингулярности до возникновения человека — предстает как единый процесс материальной эволюции, самоорганизации, саморазвития материи.

Важную роль в концепции универсального эволюционизма  играет идея отбора: новое возникает  как результат отбора наиболее эффективных  формообразований, неэффективные же инновации отбраковываются историческим процессом; качественно новый уровень организации материи окончательно самоутверждается тогда, когда он оказывается способным впитать в себя предшествующий опыт исторического развития материи. Эта закономерность характерна не только для биологической формы движения, но и для всей эволюции материи. Принцип глобального эволюционизма требует не просто знания временного порядка образования уровней материи, а глубокого понимания внутренней логики развития космического порядка вещей, логики развития Вселенной как целого.

Информация о работе Концепции современного естествознания