Автор работы: Пользователь скрыл имя, 05 Ноября 2009 в 19:49, Не определен
Учебное пособие
С другой стороны, степень разупорядоченности системы можно характеризовать так называемой термодинамической вероятностью состояния (статистическим весом) W.
Термодинамическая
вероятность (W) – это число различных
способов, которыми может быть осуществлено
данное состояние W
1. Однако пользоваться термодинамической
вероятностью для количественной оценки
направленности протекания процессов
неудобно, так как в случае нескольких
систем необходимо прибегать к перемножению
вероятностей. Удобнее, если бы удалось
ограничится суммированием каких-то величин.
Такой величиной и является энтропия,
которую можно математически выразить
через термодинамическую вероятность
следующим образом:
Свойства энтропии:
1)
если движение системы
2)
энтропия изолированной
3) при необратимых процессах энтропия возрастает. Действительно, если, например, рассмотреть процесс расширения газа в пустоту, то при этом число способов которыми может быть осуществлено новое состояние больше, чем прежнее, т.е. , а поэтому ;
4)
уменьшаться энтропия может
7.4. Второе начало термодинамики
Второе начало термодинамики определяет направление протекания происходящих в природе процессов. Его можно сформулировать несколькими способами.
Наиболее очевидная формулировка второго начала принадлежит Клаузиусу: теплота не может сама собой переходить от тела, менее нагретого, к телу более нагретому.
Второе
начало, записанное в дифференциальной
форме, постулирует существование
дифференциала энтропии (dS) и является
его определением:
7.5. Термодинамика открытых систем
Если первое начало термодинамики справедливо для любых систем, то второе начало – только для изолированных систем, т. е. таких, которые защищены от внешнего мира непрозрачной оболочкой и не обмениваются с окружающей средой энергией и веществом.
В самом деле, из формулы Больцмана следует, что, когда температура всех тел Вселенной сравняется, т. е. S = Smax, должно было бы наступить тепловое равновесие или тепловая смерть Вселенной. Но этого не произойдёт, так как Вселенная – это открытая система, т. е. она обменивается с окружающей средой энергией, веществом и информацией.
Если энтропия изолированной системы при протекании в ней реальных процессов может только увеличиваться, достигая максимума в состоянии равновесия, то энтропия открытой системы может также уменьшаться.
Приведём пример. Если принять, что теплота , отдаваемая Землёй за счёт теплового излучения, равна теплоте , полученной Землёй за счёт солнечного излучения, ( ), температура поверхности Земли T1 = 300К, а температура поверхности Солнца T2 = 5800К, то изменение энтропии Земли: .
Таким образом, за счёт того, что Земля получает высококачественное излучение и отдаёт более низкокачественное, приращение энтропии отрицательно. Это способствует упорядоченности системы, например: развитию эмбриона и других объектов живой природы.
Человек - также открытая система, и приращение его энтропии также отрицательно в период его роста, в период старения приращение энтропии становится положительным за счёт апоптоза – запрограммированного старения и гибели клеток. Апоптоз обусловлен наличием у клетки генетического кода. Как писал один стареющий физик: «Меня съедает энтропия и целиком, и по частям». Когда энтропия достигает максимального значения, система становится изолированной и наступает смерть.
8.
Концепция корпускулярно-
8.1. Природа света
Свет имеет двойственную природу – корпускулярно-волновую. С одной стороны свет – это электромагнитные волны оптического диапазона (инфракрасные лучи, видимый свет и ультрафиолетовые лучи), а с другой – поток частиц – фотонов.
Волновую природу света подтверждают явления интерференции, дифракции, поляризации, дисперсии, поглощения света и др.; корпускулярную природу: тепловое излучение, фотоэффект, эффект Комптона.
Согласно гипотезе Планка электромагнитное излучение испускается не непрерывно, а порциями – квантами. Позже кванты электромагнитного излучения были названы фотонами.
Фотон – микрочастица, квант электромагнитного излучения (в узком смысле – света), который распространяется со скоростью с. Фотон представляет собой частицу особого рода, отличную от таких микрочастиц, как электрон, протон и др., которые не могут двигаться со скоростью света в вакууме.
Энергия фотона: , где h - постоянная Планка; ν – частота света; - скорость света в вакууме; λ – длина волны фотона. Импульс фотона .
Эта
формула показывает связь между
характеристикой волны – длиной
волны и характеристикой
8.2. Корпускулярно-волновые свойства микрочастиц
Французский учёный де Бройль, осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами. То есть любой частице, обладающей импульсом, сопоставляется волновой процесс с длиной волны, определяемой формулой де Бройля: .
Эта формула справедлива для любой частицы с импульсом P.
Вскоре гипотеза де Бройля была подтверждена экспериментально американскими физиками Дэвиссоном и Джермером, которые обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решётки – кристалла никеля, даёт отчётливую дифракционную картину.
Подтверждённая экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микрообъектам присущи и корпускулярные и волновые свойства: для них существуют потенциальные возможности проявить себя в зависимости от внешних условий либо в виде волны, либо в виде частицы.
8.3. Принципы неопределённости и дополнительности
Согласно
двойственной корпускулярно-волновой
природе частиц вещества для описания
свойств микрочастиц
В классической механике всякая частица движется по определённой траектории так, что в любой момент времени точно фиксированы её координата и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении микрочастицы по определённой траектории и об одновременных точных значениях её координаты и импульса.
Немецкий физик Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришёл в 1927 г. к выводу: объект микромира невозможно одновременно с любой наперёд заданной точностью характеризовать и координатой, и импульсом. Согласно соотношению неопределённостей Гейзенберга микрочастица (микрообъект) не может иметь одновременно точно определенные координату х и импульс P, причём неопределённости этих величин удовлетворяют условию: ∆x ∙ ∆P ≥ h, т. е. произведение неопределённостей координаты и импульса не может быть меньше постоянной Планка.
Соотношение
неопределённостей неоднократно являлось
предметом философских
Для описания микрообъектов Бор сформулировал в 1927 г. принципиальное положение квантовой механики – принцип дополнительности, согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.
Такими
взаимно дополнительными
С физической точки зрения принцип дополнительности часто объясняют (следуя Бору) влиянием измерительного прибора (микроскопического объекта) на состояние микрообъекта.
С
позиции современной квантовой
теории роль прибора в измерениях
заключается в «приготовлении»
некоторого состояния системы. Состояния,
в котором взаимно
9. Элементы атомной и ядерной физики
9.1. Физика атома
В конце XIX столетия атом рассматривался как неделимая, элементарная частица. Открытие электрона и явление радиоактивного распада показало, что атом является сложным образованием. Спектроскопические исследования светящихся газов подтвердили это положение.
В 1913 г. Резерфорд предложил ядерную (планетарную) модель атома, которая, однако, оказалась в противоречии с законами классической механики и термодинамики. Необходимо было найти новые закономерности. Это сделал Бор, положив в основу своей теории следующие постулаты.
Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса. Этот постулат находится в противоречии с классической теорией.
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией: = hν = Е2 – Е1, Дж,
где Е2 и Е1 - соответственно энергии стационарных состояний атома до и после излучения (поглощения).
Немецкие физики Франк и Герц, изучая методом задерживающего потенциала столкновение электронов с атомами газов (1913 г.), экспериментально подтвердили существование стационарных состояний и дискретность значений энергии атомов.
Теория Бора была крупным шагом в развитии теории атома. Но её слабой стороной являлось то, что она была ни последовательно классической, ни последовательно квантовой.
Только с помощью квантовой механики (уравнение Шрёдингера и др.) стало возможным ответить на многие вопросы, касающиеся строения и свойств любых элементов.
9.2. Строение атомного ядра
Примерно через 20 лет после того, как Резерфорд «разглядел» в недрах атома его ядро, был открыт нейтрон – частица по всем своим свойствам такая же, как ядро атома водорода протон, но только без электрического заряда.