Эволюция Вселенной

Автор работы: Пользователь скрыл имя, 16 Марта 2011 в 20:48, реферат

Описание работы

Исследованием Вселенной стал заниматься еще самый древний Человек. Небо было доступно для его обозрения – оно было для него интересным. Недаром астрономия – самая древняя из наук о природе – и, по сути, почти самая древняя наука вообще.

Содержание работы

Введение 2
Теории о происхождении Вселенной 4
Современная космология 9
Модели будущего вселенной 16
Заключение 20
Список использованной литературы 22
Глоссарий 23

Файлы: 1 файл

Эволюция вселенной.docx

— 43.09 Кб (Скачать файл)

      Рассмотрение  причин и последствий космологического «Большого Взрыва» было бы не полным без еще одного физического понятия.  Речь  идет о так называемом фазовом  переходе  (превращении),  т.е. качественном     превращении   вещества,     сопровождающимся   резкой сменой одного его состояния другим. Советские  ученые-физики Д.А. Киржниц и А.Д. Линде первыми обратили внимание на то,  что в начальной фазе становления Вселенной, когда космическая  материя находилась в сверхгорячем, но уже остывающем состоянии, могли  происходить аналогичные физические процессы (фазовые переходы).

      Дальнейшее  изучение  космологических  следствий  фазовых  переходов  с  нарушенной  симметрией привело к новым теоретическим  открытиям и обобщениям. Среди  них   обнаружение ранее неизвестной  эпохи в саморазвитии Вселенной. Оказалось, что в ходе космологического фазового перехода она могла достичь  состояния чрезвычайно быстрого расширения, при котором ее размеры  увеличились во много раз, а плотность  вещества оставалась практически неизменной.  Исходным же состоянием,  давшим начало раздувающейся Вселенной, считается  гравитационный вакуум. Резкие изменения, сопутствующие процессу космологического   расширения   пространства   характеризуются   фантастическими   цифрами.   Так предполагается, что вся наблюдаемая Вселенная возникла из единственного вакуумного пузыря размером меньше 10 в минус 33 степени  см! Вакуумный пузырь, из которого образовалась наша Вселенная, обладал массой, равной всего-навсего одной стотысячной доле грамма.

      В настоящее время еще нет всесторонне  проверенной и признанной всеми  теории происхождения крупномасштабной структуры Вселенной, хотя ученые значительно  продвинулись в понимании естественных путей ее формирования и эволюции. С 1981 года началась разработка физической теории раздувающейся (инфляционной)  Вселенной.  К настоящему времени  физиками предложено несколько вариантов  данной теории.  Предполагается,  что  эволюция  Вселенной,  начавшаяся  с  грандиозного  общекосмического катаклизма, именуемого «Большим Взрывом», в последующем сопровождалась неоднократной  сменой режима расширения.

      Согласно  предположениям ученых, спустя 10 в минус  сорок третьей степени секунд после «Большого Взрыва» плотность  сверхгорячей космической материи  была очень высока (10 в 94 степени  грамм/см кубический). Высока была и  плотность вакуума, хотя по порядку  величины она была гораздо меньше плотности обычной материи,  а  поэтому гравитационный эффект первобытной  физической «пустоты» был незаметен. Однако в холе расширения Вселенной  плотность и температура вещества падали, тогда как плотность вакуума  оставалась неизменной. Это обстоятельство привело к резкому изменению  физической ситуации уже спустя 10 в  минус 35 степени секунды после  «Большого Взрыва». Плотность вакуума  сначала сравнивается, а затем, через  несколько сверхмгновений космического времени, становится больше ее. Тогда  и дает о себе знать гравитационный эффект вакуума - его силы отталкивания вновь берут верх над  силами  тяготения  обычной  материи,  после  чего  Вселенная начинает расширяться в чрезвычайно быстром  темпе (раздувается) и за бесконечно малую долю секунды достигает  огромных размеров. Однако этот процесс  ограничен во времени и пространстве. Вселенная, подобно любому расширяющемуся газу, сначала быстро остывает и уже в районе 10 в минус 33 степени секунды после «Большого Взрыва» сильно переохлаждается.  В  результате  этого  общевселенческого  «похолодания»  Вселенная  от  одной  фаза переходит в другую. Речь идет о фазовом переходе первого рода - скачкообразном изменении внутренней структуры космической материи и всех связанных с ней физических свойств и характеристик.  На завершающей  стадии  этого  космического  фазового  перехода  весь  энергетический  запас  вакуума превращается в тепловую энергию обычной материи, а в итоге вселенческая плазма вновь подогревается до первоначальной температуры, и соответственно происходит смена режима ее расширения.

Не менее интересен,  а  в  глобальной  перспективе  более  важен  другой результат  новейших теоретических  изысканий  -  принципиальная  возможность  избегания  начальной  сингулярности  в  ее физическом смысле.  Речь идет о совершенно новом физическом взгляде  на проблему происхождения Вселенной.

      Оказалось,  что вопреки некоторым недавним теоретическим прогнозам ( о том,  что начальную сингулярность  не удастся избежать и при квантовом  обобщении общей теории относительности) существуют определенные микрофизические  факторы, которые могут препятствовать беспредельному сжатию вещества под  действием сил тяготения.

      Еще в конце тридцатых годов было теоретически обнаружено, что звезды с массой, превышающей массу Солнца более чем в три раза,  на последнем этапе своей эволюции неудержимо сжимаются до сингуляторного состояния. Последнее в отличие  от сингулярности космологического типа,  именуемой фридмановской, называется шварцшильдовским (по имени  немецкого астронома, впервые рассмотревшего астрофизические следствия энштейновской  теории тяготения). Но с чисто физической точки зрения оба типа сингулярности   идентичны. Формально они отличаются тем,  что первая сингулярность является начальным состоянием эволюции вещества, тогда как вторая - конечным.

      Согласно  недавним теоретическим представлениям гравитационный  коллапс  должен  завершиться сжатием вещества буквально  «в точку» - до состояния бесконечной  плотности. По новейшим же физическим представлениям коллапс можно остановить где-то в районе планковской величины плотности, т.е. на рубеже 10 в 94 степени  грамм/ см. кубический. Это значит, что  Вселенная возобновляет свое расширение не с нуля, а имея геометрически  определенный (минимальный) объем и  физически приемлемое, регулярное состояние.

      Академик  М.А. Марков выдвинул интересный вариант  пульсирующей Вселенной. В логической рамке этой космологической модели старые теоретические трудности,    если не решаются окончательно, то, по крайней мере, освещаются под новым  перспективным углом зрения. Модель основана на гипотезе согласно которой  при резком уменьшении расстояния константы  всех физических взаимодействий стремятся  к нулю. Данное предположение - следствие  другого допущения,  согласно которому константа гравитационного взаимодействия зависит от степени плотности  вещества.

      Согласно  теории Маркова, всякий раз, когда Вселенная  из фридмановской стадии (конечное сжатие) переходит в стадию деситтеровскую (начальное расширение), ее физико-геометрические характеристики оказываются одними и теми же. Марков считает, что этого  условия вполне достаточно для преодоления  классического затруднения на пути физической реализации вечно осциллирующей  Вселенной.

      Что же ожидает нашу Вселенную в будущем, если она будет неограниченно  расширяться? О процессе продолжающегося  расширения нашей Вселенной свидетельскуют почти все данные наблюдений. По мере расширения пространства материя, становится все более разреженой, галактики и их скопления все более удаляются друг от друга, а температура фонового излучения приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарные частицы и холодное излучение будут бессмысленно разлетаться в непрерывно разряжающейся пустоте.

      Впрочем, черные дыры не останутся без работы. Имея на то достаточно времени, черные дыры поглотят огромное количество вещества вселенной.

      Если  теория Хокинга верна, то черные дыры будут продолжать испускать излучение, но черным дырам (с массой равной массе  Солнца) потребуется очень длительное время, прежде чем это заметно  изменит что-то. Фоновое излучение  остынет гораздо раньше, чем черные дыры начнут излучать больше, чем они  будут поглощать из этого фонового излучения. Такой момент настанет тогда, когда возраст Вселенной станет примерно в десять миллионов раз  больше предполагаемого на сегодня  Должно пройти около 10 66 лет, прежде чем черные дыры солнечной массы начнут взрываться, выбрасывая потоки частиц и излучения.

      Дж. Берроу из Оксфордского университета и Ф. Типлер из Калифорнийского университета в своих работах нарисовали картину  отдаленного будущего неограниченно  расширяющейся Вселенной. Даже внутри старой нейтронной звезды сохраняется  еще достаточно энергии Чтобы  время от времени сообщать частицам, находящимся вблизи ее поверхности, скорость, превышающую скорость убегания. Предполагается, что в результате этого через достаточно продолжительное  время все вещество нейтронной звезды должно испариться. Распадутся и черные дыры, вызвав рождение (в равных пропорциях) частиц и античастиц. По мнению Берроу и Типлера, если запас энергии  во Вселенной достаточен только для  того, чтобы обеспечить ее неограниченное расширение, то эффект электрического притяжения в электронно-позитронных парах перевесит и гравитационное притяжение и общее расширение Вселенной как целого. За определенное конечное время все электроны проаннигилируют со всеми позитронами. В конечном итоге последней стадии еуществующей материи окажутся не разлетающиеся холодные темные тела и черные дыры, а безбрежное море разреженного излучения, остывающего до конечной, повсюду одинаковой, температуры.

      Второе  начало термодинамики показывает, что  конец эволюции Вселенной наступит, когда выровняется температура  ее вещества. Так как тепло передастся от более теплых тел к более  холодным, различие их температур со временем сглаживается, совершение дальнейшей работы становится невозможным. Эта  мысль о «тепловой смерти»  Вселенной была высказана еще  в 1854 г. Г. Гельмгодьдем (1821-1894) Интересно, что наше современное представление  о неограниченно расширяющейся  Вселенной вместе с концепцией квантового излучения черных дыр, которая основана на аналогии между гравитацией и  термодинамикой, привели  к тем  же выводам, что сделал Гельмгольц.Мы не можем знать точно, каков будет  исход противоборства расширения селенной и гравитационного притяжения ее вещества. Если победит тяготение, то Вселенная когда-нибудь склапсирует  в процессе Большого сжатия, которое  может оказался концом ее существования, либо прелюдией к новому расширению. Если же силы тяготения проиграют  «сражение», то расширение будет продолжаться неограниченно долго, но тяготение  будет продолжать играть существенную роль в определении окончательного состояния вещества. Вещество может  превратиться в безбрежное море однородного  излучения, либо продолжится рассеивание  темных холодных масс. В неясном  далеком будущем прошедшая эпоха  звездной активности может оказаться  лишь кратчайшим мгновением в бесконечной  жизни Вселенной.

 

Модели  будущего вселенной

 

      Каково  же будущее Вселенной? Многие выдающиеся ученые ХХ века неоднократно задавались этим вопросом.

      В 1917г. А. Эйнштейн выступил с гипотезой  о конечной, но безграничной Вселенной. Суть данной гипотезы была в следующем: предположим, что вещество, составляющее планеты, звезды и звездные системы, равномерно рассеяно по всему мировому пространству. Тем самым мы допускаем, что Вселенная всюду однородна и к тому же изотропна, то есть во всех направлениях имеет одинаковые свойства. Будем считать, что средняя плотность вещества во Вселенной выше так называемой критической плотности. Если все эти требования соблюдены, мировое пространство, как это доказал Эйнштейн, замкнуто и представляет собой четырехмерную сферу. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе возможно облететь всю замкнутую Вселенную, двигаясь все время в одном и том же направлении.  Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная по Эйнштейну, содержит хотя и большое, но все-таки конечное число звезд и звездных систем, а поэтому к ней фотометрический и гравитационный парадоксы просто неприменимы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна - такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

      Пять  лет спустя, в 1922 г., советский физик  Александр Фридман на основании  строгих расчетов показал, что Вселенная Эйнштейна никак не может быть стационарной, неизменной, как это считал Эйнштейн. Вселенная непременно должна расширяться, причем речь идет о расширении самого пространства, то есть об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

      Идея  Фридмана поначалу показалась Эйнштейну  слишком смелой и необоснованной. Он даже заподозрил ошибку в вычислениях. Но, ознакомившись с ними, он публично признал, что мы живем в расширяющейся Вселенной.

      Из  расчетов Фридмана вытекали три возможных  следствия:

      Вселенная и ее пространство расширяются с  течением времени; Вселенная сжимается;  во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.

      Доказательства  в пользу модели расширяющейся Вселенной были получены в 1926 г., когда американский астроном Э. Хаббл открыл при исследовании спектров далеких галактик (существование которых было доказано в 1923 г. тем же Хабблом) красное смещение спектральных линий (смещение линий к красному концу спектра), что было истолковано как следствие эффекта Доплера (изменение частоты колебаний или длины волн из-за движения источника излучения и наблюдателя по отношению друг к другу) - удаление этих галактик друг от друга со скоростью, которая возрастает с расстоянием. По последним измерениям, это увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек. После этого открытия вывод Фридмана о нестационарности Вселенной получил подтверждение и в космологии утвердилась модель расширяющейся Вселенной.

      Наблюдаемое нами разбегание галактик есть следствие  расширения всего пространства замкнутой  конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения.

      Дальнейшее  развитие модель расширяющейся Вселенной  получила в послевоенные годы и особенно в последние десятилетия благодаря исследованиям известных отечественных космологов Зельдовича и Новикова. Уточнены величины, характеризующие скорость расширения Вселенной, рассмотрены различные варианты моделей Вселенной в зависимости от средней плотности вещества в мировом пространстве, достаточно подробно намечен ход эволюции Вселенной от момента начала ее расширения.

Информация о работе Эволюция Вселенной