Автор работы: Пользователь скрыл имя, 13 Февраля 2011 в 16:52, курсовая работа
Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.
Введение. 2
Термоядерный синтез в недрах звёзд. 4
Этапы эволюции звезд. 4
Рождение звёзд. 4
Молодые звёзды. 5
Молодые звёзды промежуточной массы. 6
Молодые звёзды с массой больше 8 солнечных масс. 6
Середина жизненного цикла звезды. 7
Зрелость. 7
Поздние годы и гибель звёзд. 8
Старые звёзды с малой массой. 8
Звёзды среднего размера. 8
Белые карлики. 9
Сверхмассивные звёзды. 10
Нейтронные звёзды. 11
Чёрные дыры. 12
Взгляды различных ученых на процессы рождения и развития галактик. 13
Современные представления о процессах развития и происхождения галактик. 18
Рождение галактик 19
Заключение. 21
Список литературы: 22
Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.
Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:
Известно, что
в некоторых сверхновых сильная
гравитация в недрах сверхгиганта заставляет электроны
упасть на атомное ядро, где они, сливаясь
с протонами, образуют нейтроны[источник не указан
Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.
Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского. После этого звезда становится чёрной дырой.
Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика, вероятно, делает возможными исключения из этого правила.
Остаётся ряд открытых вопросов. Главный среди них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта, а также зафиксировать быструю, миллисекундную переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать существование чёрных дыр.
В настоящий момент существуют только косвенные наблюдения. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень высокого красного смещения, где согласно с современными представлениями (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.
Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?
К проблеме эволюции галактик ученые начали серьезно подходить в середине 40х годов. Эти годы ознаменовались рядом важных открытий в звездной астрономии. Удалось выяснить, что среди звездных скоплений, рассеянных и шаровых, имеются молодые и старые, и даже оценить их возраст.
Поэтому путь к раскрытию хода эволюции галактик, казалась, намечен сам собой. Нужно было произвести своеобразную перепись населения в галактиках разных типов и сравнить результаты. В каких галактиках: эллиптических или спиральных, в каких классах галактик преобладают более молодые или более старые звезды такое исследование дало бы ясное указание на направление эволюции галактик, позволило бы выяснить эволюционный смысл классификации Хаббла.
Но прежде надо было выяснить численное соотношение между разными типами галактик. Непосредственное изучение фотографий полученные на обсерватории Маунт Вилсон, позволило Хабблу получить следующие результаты эллиптические - 23%, спиральные 59%, спиральные с перемычкой 15%, неправильные 3%.
Однако действительное
соотношение численности
И так, большая часть спиральных галактик оказалась галактики гиганты, большинство эллиптических галактик галактики карлики. Конечно, среди тех и других существовал некий разброс в размещении, имелись и эллиптические галактики гиганты, но в среднем было именно так.
В 1947 году Х.Шепли обратил внимание на то, что количество ярких сверхгигантов постепенно убывает по мере перехода от неправильных галактик к спиральным, а затем к эллиптическим. Спиралях класса Sа, замечает Шепли, встречаются лишь очень мало звезд большой светимости, а в эллиптических галактиках они практически отсутствуют. Получалось, что молодыми являлись именно неправильные галактики и спирали класса Sс сильно разветвленными ветвями, спирали класса Sа и эллиптические галактики находились на более поздней стадии развития. Шепли тогда же высказал мысль, что переход галактик из одного класса в другой должен был занять громадные сроки и совсем не обязательно имел место. Возможно, что галактики образовались все такими какими мы их наблюдаем, а потом лишь медленно эволюционировали в направлении сглаживания и округления их форм.
Х. Шепли обратил внимание еще на одно важное обстоятельство. Уже давно было известно существование двойных галактик это не случайные совпадения положений, не могли они быть и результатом захвата одной галактики другой. И вот не редко в этих парах галактики существовали спиральные с эллиптическими. Но галактические пары, очевидно, вместе и возникли. Можно ли в этом случае допустить, что они прошли существенно разный путь развития.
В 1949 году советский
астроном профессор Б. В. Кукаркин опубликовал
важную работу Исследование строения
и развития звездных систем на основе
изучения переменных звезд . В ней
были и новые установленные
В своей работе
Кукаркин обращал внимание на давно
обнаруженные, но часто забываемые
обстоятельства существования не только
пары, но и скопления галактик. Между
тем возраст скопления
Таким образом, получалось, что практически одновременно образовались галактики разных форм. Значит, переход каждой галактики за время ее существования из одного типа в другой совсем не обязателен.
К концу сороковых и началу пятидесятых годов в космогонии галактик сложилось несколько направлений.
Представители одного из них пытались построить новую гипотезу образования галактик из каких то первичных, до галактических форм материи. Так Вейзеккер разработал теорию возникновения галактик из вращающейся массы, в которой значительную роль играла турбулентность. По его теории эллиптические галактики находились на самой поздней, а неправильные на самой ранней стадии развитии. Но Вейзеккер ввел существенные уточнение: он показал что в случае турбулентного развития газовых масс в галактике шкала времени такого развития пропорциональна размерам галактик. По этому карликовые эллиптические галактики хотя и находятся на более поздней стадии развития, но могут быть моложе по возрасту, чем гигантские спиральные. Это позволяло устранить возрождение, связанное с тем, что в скоплениях встречаются галактики всех типов. Но тогда должна была существовать зависимость между размерами и стадией эволюции галактик в скоплениях, то есть самые маленькие галактики там должны быть непременно эллиптическими, средние спиральными, а большие неправильными. И хотя между эллиптическими и спиральными галактиками такое соотношение размеров выполнялось, неправильные галактики, будучи меньше спиральных, явно не укладывались в схему Вейзеккера.
Наконец, не согласовывался с этой гипотезой тот факт, что в эллиптических галактиках преобладают старые звезды ( в абсолютной шкале времени). Значит, эллиптические галактики должны быть не только относительно, но и абсолютно старше спиральных. А как же быть с галактиками в скоплениях? Предложение, что эллиптические галактики образовывались раньше, а спиральные возникали в том же скоплении потом, слишком искусственно. К тому же данные о парных галактиках этому противоречат.
Выход из положения
наметился благодаря работам
В. А. Амбарцумяна и его школы,
показавшим, что звездообразование
в нашей, а значит и в других
галактиках, продолжается в наше время.
Поэтому спиральные и неправильные
галактики могут изобиловать
молодыми звездами из населения I типа
не потому, что эти галактики сами
молоды, а потому, что в них
имеются условия для
В явной связи
с этим стоит еще один существенный
факт, на который обратил внимание
Б. В. Кукаркин в уже упомянутой работе.
Н и в о д н о й эллиптической
галактике, даже наиболее сжатой (Е7), не
обнаружено сконцентрированного к
экваториальной плоскости межзвездного
диффузного вещества. Обнаруженные в
них диффузные включения
Приведенный факт,
наряду с работами академика Г. А.
Шайна и других ученых по изучению
связи молодых звезд с
А. И. Лебединский, которому принадлежит основная идея гипотезы, исходил из следующих основных предположений:
Галактики образовались из разреженного диффузного вещества, заполнявшего (и заполняющего) Метагалактику.
Галактики возникали не одновременно, так что некоторые из них образовывались, когда другие уже существовали.
Условия в метагалактическом пространстве в период формирования галактик мало отличались от современных.
Ту массу газа, из которой образовалась наша (или какая-либо другая) Галактика, А. И. Лебединский назвал п р о т о г а л а к т и к о й . Он полагал, что до начала сжатия состояние протогалактики было квазистатическим, то есть почти неизменным. Потом какие-то постепенные количественные изменения состояния протогалактики (например, увеличение плотности) привели к тому, что она начала сжиматься. Этому могли способствовать и потери энергии молекул газа при соударении с твердыми пылинками.
Дальше сжатие протогалактики происходит почти по Джинсу: первоначально сферическая туманность вращается, а сжимаясь, начинает вращаться все быстрее, что приводит к ее уплощению, притом ничем не ограниченному. Но это вовсе не эллиптическая туманность наоборот, пока в протогалактике не возникнут звезды, она не может излучать, и мы не можем ее заметить.