Эволюция галактик и звезд

Автор работы: Пользователь скрыл имя, 13 Февраля 2011 в 16:52, курсовая работа

Описание работы

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Содержание работы

Введение. 2
Термоядерный синтез в недрах звёзд. 4
Этапы эволюции звезд. 4
Рождение звёзд. 4
Молодые звёзды. 5
Молодые звёзды промежуточной массы. 6
Молодые звёзды с массой больше 8 солнечных масс. 6
Середина жизненного цикла звезды. 7
Зрелость. 7
Поздние годы и гибель звёзд. 8
Старые звёзды с малой массой. 8
Звёзды среднего размера. 8
Белые карлики. 9
Сверхмассивные звёзды. 10
Нейтронные звёзды. 11
Чёрные дыры. 12
Взгляды различных ученых на процессы рождения и развития галактик. 13
Современные представления о процессах развития и происхождения галактик. 18
Рождение галактик 19
Заключение. 21
Список литературы: 22

Файлы: 1 файл

Реферат КСЕ Эволюция Галактик и звезд - копия.docx

— 61.71 Кб (Скачать файл)

Молодые звёзды промежуточной  массы.

Молодые звёзды промежуточной массы (от 2 до 8 массы  Солнца) качественно эволюционируют точно так же, как и их меньшие  сестры, за тем исключением, что в  них нет конвективных зон вплоть до главной последовательности.

Объекты этого  типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс.

На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического  ядра, звезда успела проскочить все  промежуточные стадии и разогреть  ядерные реакции до такой степени, чтобы они компенсировали потери на излучение. У данных звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100—200 массы Солнца.

Середина  жизненного цикла  звезды.

Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,08 до более чем 200 солнечных масс[источник не указан 400 дней]. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

Маленькие, холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности сотни миллиардов лет, в то время как массивные сверхгиганты уйдут с главной последовательности уже через несколько миллионов лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в  среднем 10 миллиардов лет. Считается, что  Солнце все ещё на ней, так как  оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она уходит с главной последовательности.

Зрелость.

По прошествии от миллиона до нескольких десятков миллиардов лет (в зависимости от начальной  массы) звезда истощает водородные ресурсы  ядра. В больших и горячих звёздах  это происходит гораздо быстрее, чем в маленьких и более  холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, которое  производилось этими реакциями  и уравновешивало силу собственного гравитационного притяжения звезды, внешние слои начинают сжиматься  к ядру. Температура и давление повышаются как во время формирования протозвезды, но на этот раз до гораздо  более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Очень горячее  ядро становится причиной чудовищного  расширения звезды. Её размер увеличивается  приблизительно в 100 раз. Таким образом  звезда становится красным гигантом, и фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит в дальнейшем, вновь зависит от массы звезды.

Поздние годы и гибель звёзд.

Старые  звёзды с малой  массой.

На сегодняшний  день достоверно неизвестно, что происходит с лёгкими звёздами после истощения  запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик.

Но звезда с  массой менее 0,5 солнечной никогда  не будет в состоянии преобразовывать  гелий даже после того, как в  ядре прекратятся реакции с участием водорода. Звёздная оболочка у них  недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким  звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды  среднего размера.

Туманность Кошачий  Глаз планетарная туманность, сформировавшаяся после гибели звезды, по массе приблизительно равной солнечной

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта, её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия. Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

Изменения в  величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске  энергии. Выпуск энергии смещается  в сторону низкочастотного излучения. Все это сопровождается нарастающей  потерей массы вследствие сильных  звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа, OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров.

Реакции сжигания гелия очень чувствительны к  температуре. Иногда это приводит к  большой нестабильности. Возникают  сильнейшие пульсации, которые в  конечном итоге сообщают внешним  слоям достаточно кинетической энергии, чтобы быть выброшенными и превратиться в планетарную туманность. В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

  Белые карлики.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство  звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

У звёзд более  массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные  звёзды.

Крабовидная туманность, разлетающиеся остатки взрыва сверхновой, произошедшего почти 1000 лет назад

После того, как  внешние слои звезды, с массой большей  чем пять солнечных, разлетелись  образовав красный сверхгигант, ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

В конечном итоге, по мере образования всё более  тяжёлых элементов периодической системы, из кремния синтезируется железо-56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер невозможно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные  секунды приводит к взрыву сверхновой звезды невероятной силы.

Сопутствующий этому всплеск нейтрино провоцирует ударную волну[источник не указан 596 дней]. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

Информация о работе Эволюция галактик и звезд