Экспериментальные доказательства специальной теории относительности

Автор работы: Пользователь скрыл имя, 29 Декабря 2011 в 18:13, контрольная работа

Описание работы

С момента создания специальной теории относительности (СТО) прошло более сотни лет. Официально признано ее экспериментальное подтверждение в разного типа опытах, тем не менее, споры о ее корректности не утихают и по настоящее время, особенно на форумах в сети Интернет. При внимательном анализе проблемы выясняется, что в этих дискуссиях обе стороны не удосужились аккуратно выяснить не только сущность самой теории и обсуждаемых вопросов, но даже физический смысл входящих в уравнения величин.

Содержание работы

Введение………………………………………………………………………...3
1. Создание специальной теории относительности………………………….5
2. Сущность специальной теории относительности…………………………7
3. Аксиоматические основания СТО………………………………………….9
4. Экспериментальные основания СТО………………………………………17
Заключение……………………………………………………………………..20
Список литературы……………………………

Файлы: 1 файл

виталик.doc

— 106.00 Кб (Скачать файл)

     Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых неподвижных относительно друг друга часов, так что справедливо свойство транзитивности: если часы A синхронизованы с часами B, а часы B синхронизованы с часами C, то часы A и C также окажутся синхронизованными.

     В отличие от классической механики единое время можно ввести только в рамках данной системы отсчёта. В СТО не предполагается, что время является общим для различных систем. В этом состоит основное отличие аксиоматики СТО от классической механики, в которой постулируется существование единого (абсолютного) времени для всех систем отсчёта.

Линейность  преобразований

     Простейшими преобразованиями между двумя ИСО являются линейные функции. Например, для координаты x и времени t можно записать:

 

где Ai,Bi,Ci — некоторые постоянные коэффициенты, которые могут зависеть от единственного  параметра — относительной скорости v. Линейность преобразований обычно связывается с однородностью пространства и времени.

     Вообще говоря, можно показать, что в общем случае преобразования между двумя ИСО должны быть дробно-линейными функциями координат и времени с одинаковым знаменателем. Для этого достаточно использовать определение ИСО: если некоторое тело имеет постоянную скорость относительно одной инерциальной системы отсчёта, то его скорость будет постоянна и относительно любой другой ИСО.

     Для получения линейных преобразований необходимо выполнение более сильного требования: если два объекта имеют одинаковые скорости относительно одной инерциальной системы отсчёта, то их скорости будут равны и в любой другой инерциальной системе.

Согласование  единиц измерения

     Чтобы измерения, выполненные в различных ИСО, можно было между собой сравнивать, необходимо провести согласование единиц измерения между системами отсчёта. Так, единицы длины могут быть согласованы при помощи сравнения эталонов длины в перпендикулярном направлении к относительному движению инерциальных систем отсчёта. Например, это может быть кратчайшее расстояние между траекториями двух частиц, движущихся параллельно осям x и x' и имеющих различные, но постоянные координаты (y, z) и (y',z'). Поэтому при относительном движении систем вдоль оси x можно считать, что y'=y, z'=z.

     Для согласования единиц измерения времени можно использовать идентично «устроенные» часы, например, атомные. Другой способ согласования единиц времени — это соглашение о некотором значении относительной скорости систем отсчёта. Если начало системы S' (x'=0) движется со скоростью v вдоль оси x системы S, то его траектория в этой системе будет иметь вид x=vt. Аналогично, начало системы отсчёта S (x=0) движется относительно S' со скоростью -v, поэтому имеет траекторию x'=-vt'.      При этом событие совпадения начал отсчёта систем выбирается за начальный момент времени (t'=t=0, когда x'=x=0). Эти соглашения позволяют записать преобразования в следующем виде:

     где коэффициенты γ(v), σ(v) зависят от относительной скорости систем отсчёта и для своего определения требуют дополнительных предположений.

Изотропность  пространства

     Пространство в инерциальных системах отсчёта предполагается изотропным (нет выделенных направлений). Это приводит к тому, что γ(v) является чётной функцией скорости: γ( − v) = γ(v).

     Рассмотрим, например, измерение длины некоторого объекта (линейки), неподвижного в системе отсчёта S'. Если одновременно (Δt = 0) в системе S измерить координаты «начала» и «конца» линейки, то её длина Δx' = γ(v)Δx не должна зависеть от направления (знака) скорости v, откуда следует, что функция γ(v) является чётной.

Принцип относительности

     Ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом. Совместно с остальными постулатами, перечисленными выше, принципа относительности достаточно, чтобы получить явный вид преобразований координат и времени между ИСО.

     Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна v1, скорость системы S3 относительно S2 равна v2, а относительно S1, соответственно, v3. Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство:

 

    Так как относительные скорости систем отсчёта v1 и v2 произвольные и независимые величины, то это равенство будет выполняться только в случае, когда отношение σ(v) / v равно некоторой константе α, единой для всех инерциальных систем отсчёта, и, следовательно.

     Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию .

     Таким образом, с точностью до произвольной константы α, получается явный вид преобразований между двумя ИСО. О численном значении константы α и её знаке без обращения к эксперименту ничего сказать нельзя [13]. Если α > 0, то удобно ввести обозначение α = 1 / c2. Тогда преобразования принимают следующий вид:

 

и называются преобразованиями Лоренца. Из дальнейшего анализа станет ясно, что константа  имеет смысл максимальной скорости движения любого объекта. Подобный вывод преобразований Лоренца стал известен спустя 5 лет после известной статьи Эйнштейна 1905 года, благодаря работам Игнатовского, Франка и Роте.

Постулат  постоянства скорости света

     Исторически важную роль при построении СТО сыграл второй постулат Эйнштейна, утверждающий, что скорость света c не зависит от скорости движения источника и одинакова во всех инерциальных системах отсчёта. Именно при помощи этого постулата и принципа относительности Альберт Эйнштейн в 1905 г. получил преобразования Лоренца с фундаментальной константой c, имеющей смысл скорости света. С точки зрения описанного выше аксиоматического построения СТО второй постулат Эйнштейна оказывается теоремой теории и непосредственно следует из преобразований Лоренца (см. релятивистское сложение скоростей). Тем не менее, в силу его исторической важности, такой вывод преобразований Лоренца широко используется в учебной литературе.

    Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа c, возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость c и скорость света cem. Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия. Чтобы измерить фундаментальную скорость c нет необходимости проводить электродинамические эксперименты. Достаточно, воспользовавшись, например, релятивистским правилом сложения скоростей по значениям скорости некоторого объекта относительно двух ИСО, получить значение фундаментальной скорости c.

Принцип параметрической  неполноты

     Приведенный выше вывод преобразований Лоренца основывался на тех же постулатах, что и классическая механика. Однако в последней дополнительно вводится аксиома абсолютности времени t' = t, что приводит к значению константы c, равному бесконечности, и, следовательно, к преобразованиям Галилея. Таким образом, СТО фактически строится на базе подмножества аксиом классической механики.

     Обобщением этого факта явилась формулировка принципа параметрической неполноты. Согласно этому принципу построение более общей теории (СТО) возможно на основе аксиом менее общей (классической механики). Для этого можно отказаться от части аксиом менее общей теории. Возникающая при этом неполнота (уменьшение исходной аксиоматической информации) может привести к появлению неопределяемых в рамках теории фундаментальных констант. В случае СТО отказ от аксиомы абсолютности времени (время течёт одинаковым образом во всех системах отсчёта) приводит к появлению фундаментальной константы, имеющей смысл предельной скорости движения любых материальных объектов. Применение этого принципа позволяет получить, например, проективное обобщение теории относительности объясняет происхождение фундаментальных физических констант.

Непротиворечивость  теории относительности

     Тот факт, что СТО может быть построена на подмножестве аксиом классической механики, доказывает её непротиворечивость, точнее, сводит проблему доказательства непротиворечивости СТО к доказательству непротиворечивости классической механики. Действительно, если следствия из более широкой системы аксиом являются непротиворечивыми, то они, тем более, будут непротиворечивыми при использовании только части аксиом.

     С точки зрения логики противоречия могут возникать, когда к уже существующим аксиомам добавляется новая аксиома, не согласующаяся с исходными. В аксиоматическом построении СТО, описанном выше, этого не происходит, поэтому СТО является непротиворечивой теорией.

Геометрический  подход

     Возможны другие подходы к построению специальной теории относительности. Следуя Минковскому и более ранней работе Пуанкаре, можно постулировать существование единого метрического четырёхмерного пространства-времени с 4-координатами (ct,x,y,z). В простейшем случае плоского пространства метрика, определяющая расстояние между двумя бесконечно близкими точками, может быть евклидовой или псевдоевклидовой. Последний случай соответствует специальной теории относительности. Преобразования Лоренца при этом являются поворотами в таком пространстве, которые оставляют неизменным расстояние между двумя точками.

     Возможен ещё один подход, в котором постулируется геометрическая структура пространства скоростей. Каждая точка такого пространства соответствует некоторой инерциальной системе отсчёта, а расстояние между двумя точками — модулю относительной скорости между ИСО. В силу принципа относительности все точки такого пространства должны быть равноправными, а, следовательно, пространство скоростей является однородным и изотропным. Если его свойства задаются римановой геометрией, то существует три и только три возможности: плоское пространство, пространство постоянной положительной и отрицательной кривизны. Первый случай соответствует классическому правилу сложения скоростей. Пространство постоянной отрицательной кривизны (пространство Лобачевского) соответствует релятивистскому правилу сложения скоростей и специальной теории относительности.

 

4. Экспериментальные основания СТО 

     Специальная теория относительности лежит в основе всей современной физики. Поэтому, какого-либо отдельного эксперимента, «доказывающего» СТО нет. Вся совокупность экспериментальных данных в физике высоких энергий, ядерной физике, спектроскопии, астрофизике, электродинамике и других областях физики согласуется с теорией относительности в пределах точности эксперимента. Например, в квантовой электродинамике (объединение СТО, квантовой теории и уравнений Максвелла) значение аномального магнитного момента электрона совпадает с теоретическим предсказанием с относительной точностью 10 − 9 .

     Фактически СТО является инженерной наукой. Её формулы используются при расчёте ускорителей элементарных частиц. Обработка огромных массивов данных по столкновению частиц, двигающихся с релятивистскими скоростями в электромагнитных полях, основана на законах релятивистской динамики, отклонения от которых обнаружено не было. Поправки, следующие из СТО и ОТО, используются в системах спутниковой навигации (GPS). СТО лежит в основе ядерной энергетики, и т. д.

     Всё это не означает, что СТО не имеет пределов применимости. Напротив, как и в любой другой теории, они существуют, и их выявление является важной задачей экспериментальной физики. Например, в теории гравитации Эйнштейна (ОТО) рассматривается обобщение псевдоевклидового пространства СТО на случай пространства-времени, обладающего кривизной, что позволяет объяснить большую часть астрофизических и космологических наблюдаемых данных. Существуют попытки обнаружить анизотропию пространства и другие эффекты, которые могут изменить соотношения СТО. Однако необходимо понимать, что если они будут обнаружены, то приведут к более общим теориям, предельным случаем которых снова будет СТО. Точно так же при малых скоростях верной остаётся классическая механика, являющаяся частным случаем теории относительности. Вообще, в силу принципа соответствия, теория, получившая многочисленные экспериментальные подтверждения, не может оказаться неверной, хотя, конечно, область её применимости может быть ограничена.

Информация о работе Экспериментальные доказательства специальной теории относительности