Автор работы: Пользователь скрыл имя, 14 Января 2015 в 13:31, курсовая работа
В условиях посткризисного периода важнейшей проблемой для коммерческих банков является оценка и анализ рисков своих кредитных портфелей, поскольку увеличение доли проблемных кредитов влияет на позиции, занимаемые банком на рынке кредитных ресурсов. Для успешного кредитования банки должны разрабатывать и внедрять эффективные системы управления кредитными рисками. Именно поэтому, тема настоящей работы является актуальной и практически значимой.
Классификационные |
Комплексного анализа |
Правило шести «Си» |
САМPАRY |
РАРTS |
Оценочная система анализа |
Рисунок 2.1. Модели оценки кредитоспособности заемщика
Классификационные модели делятся на модели бальной оценки кредита, то есть рейтинговые методики, а также модели прогнозирования банкротств, которые включают в себя статистическую оценку, основанной на МDА – Мultiple Discriminate Analysis – множественный дискриминaнтный анализ.
Модели комплексного анализа, основанные на «полуэмпирических» методологиях применяются для оценки потребительских кредитов. Среди них выделяют такие модели как: «правило 6C», PARTS, CAMPARY, Judgmental Analysis (оценочная система анализа).
Классификационные модели дают возможность разбить на различные группы (классы) и служат вспомогательным инструментом, позволяющим определить возможности удовлетворения кредитной заявки.
Чаще всего на практике применяются две основные модели оценки заемщика: бальная (рейтинговая) оценка и прогнозирование банкротств. Рейтинговые модели позволяют поделить заемщиков на исполнительных и неисполнительных, а модели прогнозирования стараются дифференцировать устойчивые компании и фирмы-банкроты.
Рейтинговая оценка компании производится на основании рассчитанных значений различных финансовых коэффициентов и выражается в большинстве случаев в баллах. Баллы высчитываются путем перемножения значения любого из показателей на вес его в рейтинге.
В итоге, общий вид формулы рейтинговой оценки:
где, - интегральный рейтинг (показатель);
- показатель удельного веса i – го показателя;
– числовое значение i-го параметра;
n – количество параметров.
Коммерческие банки часто используют систему скоринга. Кредитный скоринг (kredit scoring) представляет собой технический прием, который был предложен известным американским ученым экономистом Д.Дюраном ещё в начале 40-ых годов для разделения заемщиков на основании потребительского кредита. Отличием кредитного скоринга и рейтинговой оценки является то, что в формуле рейтинговой оценки стоит вместо (значения i-ого показателя) – частная бальная оценка i – ого показателя. На основе этого, для каждого параметра определяют несколько интервалов возможных значений, а затем каждому интервалу устанавливают определенное количество рейтинговых баллов или определяется его класс.
Достоинство рейтинговой модели заключается в ее простоте: достаточно рассчитать необходимые финансовые коэффициенты и их взвесить, чтобы определить класс, к которому принадлежит заемщик. Следует, однако, понимать, что в расчете рейтинга вполне могут участвовать только те характеристики, которые будут отвечать установленным нормативам.
Модели прогнозирования чаще всего используются при оценке качества потенциальных клиентов-заемщиков и основываются на статистических методах, из которых наиболее распространенным является множественный дискриминaнтный анализ (MДA), также известный в практике как «кластерный анализ».
Общий вид дискриминaнтной функции:
где и - некоторые параметры (коэффициенты регрессии);
ƒi – факторы, которые характеризуют финансовое состояние заемщика (например, ими могут служить финансовые коэффициенты).
Коэффициенты регрессии определяются на основе статистической обработки данных по выборке предприятий или фирм, которые либо банкроты, либо смогли выжить в течение выбранного периода. Все компании можно разбить на две основные группы: на тех, кому финансовые трудности в ближайшее время не грозят вплоть до банкротства, и на тех, кому грозит это. Если Z – оценка компании располагается ближе к показателю обычной компании – банкрота, то она обанкротится при условии продолжения ухудшения ее положения. Если риск-менеджеры компаний и банк, осознав все финансовые трудности, пытаются предотвратить усугубляющуюся ситуацию, то банкротства может не произойти, следовательно, Z – оценка является неким сигналом раннего предупреждения.
Чтобы применить МДА необходимо иметь достаточно репрезентативную выборку предприятий, которые дифференцированы по отраслям и размерам. Трудность состоит в том, что не всегда внутри отрасли возможно найти достаточное количество фирм-банкротов, чтобы произвести расчет коэффициентов регрессии.
Наиболее используемыми моделями MДA являются модели Альтмана и Чeccepa.
Альтман, Хoльдepман и Нарайана ввели «Z – анализ» на основе уравнения: следующего вида:
Отнесение компании к определенной группе надежности осуществляется на основе расчетных значений индекса Z:
Z ≤ 1,8 – очень высока вероятность обанкротиться;
1,8 < Z ≤ 2,7 – высокая вероятность обанкротиться;
2,7 < Z ≤ 3,0 – низкая вероятность обанкротиться;
3,0 < Z – очень низка вероятность обанкротиться.
Пятифакторная известная модель Альтмана, созданная на основе анализа финансового положения 66 фирм, дает достаточно точный прогноз наступления банкротства вперед на три-четыре года. При этом факт банкротства на ближайший год можно определить почти с 95% точностью.
Поздние его работы основывались на более глубоком исследовании, при этом более тщательно были рассмотрены капитализируемые обязательства по аренде, где применялся прием сглаживания данных, с целью выровнять случайные колебания. Новые модели обладают способностью предсказывать банкротства с очень высокой степенью точности на пару лет вперед и с меньшей, и все же допустимой точностью в 70% на пять лет.
Z = 1,2*X1 + 1,4*X2 + 3,3*Х3 + 0,6* X4 + 0,9*Х5 – 2,675, (2.5)
Если Z < 0, то предприятие обладает «рискованным» финансовым положением, если Z > 0 –компания считается «статистически здоровым».
Построить модель для российских заемщиков, наподобие уравнения Альтмана, пока проблематично и ненадежно, во-первых, в связи с отсутствием некой истории банкротств заемщиков; во-вторых, из-за существенного влияния на признание компании банкротом различных неучтенных факторов, не подлежащих учету; в-третьих, в результате изменчивости нормативной базы банкротств отечественных предприятий.
Основной проблемой практического применения моделей скopинга служит обеспечение связанности, а также отсутствие противоречивости всевозможных показателей. Большинство банков, стремящиеся добиться наиболее точных оценок, стараются комбинировать по своему усмотрению разные параметры и коэффициенты.
Модель Чeccepa, модель наблюдения за ссудами, позволяет прогнозировать случаи неисполнения клиентом условий договора по кредиту. Под «невыполнением условий» понимают не только непогашение ссуды, но и всевозможные другие отклонения, способные сделать ссуду менее выгодной для кредитора-заемщика, чем было первоначально предусмотрено.
Оценочные показатели модели следующие:
Y = - 2,0434 – 5,24 * X1 + 0,0053 *X2 –
6,6507 *X3 +
+4,4009 * X4 – 0,0791 *X5 – 0,1220 *X6
Переменная Y - линейная комбинация независимых переменных, используемая в следующей формуле при оценке вероятности неисполнения условий договора, Z:
где, e равное 2,71828 - число Эйлера, основание натурального логарифма.
Расчетная оценка Y рассматривается как присутствие факторов, способствующих выполнению условий договора. Чем больше это значение оценки Y, тем выше вероятность того, что данный заемщик не выполнит условия заключенного договора. В модели Чессера применяется такие следующая расшифровка для оценки вероятности неисполнения договора:
Чессер применял данные нескольких банков по 37 «удовлетворительным» и 37 «неудовлетворительным» ссудам, при этом для расчета он взял показатели балансов компаний-заемщиков за год до выдачи кредита. Подставив формулу «вероятности нарушения условий договора» и расчетные показатели модели, Чессер точно определил дефолт три из четырех анализируемых случаев.
Российскими дискриминантными моделями прогнозирования банкротств являются двухфакторная модель Федотовой М.А. и пятифакторная модель Сайфулина P.C., Kадыкова Г.Г..
Модель оценки вероятности банкротств Федотовой M.A. основывается на коэффициенте текущей ликвидности (X1) и доле заемных средств в валюте баланса (X2):
Z = -0,3877 – 1,0736 * X1 + 0,0579 * Х2
Если значение индекса Z отрицательное, то вероятно, что заемщик так и останется платежеспособным.
Сайфулина P.С. и Kадыкова Г.Г. представили уравнение определения кредитоспособности заемщика в виде:
Z = 2 * Х1 + 0,1 *X2 + 0,08 *X3 + 0,45 * X4 + Х5, (2.9)
Если значения финансовых коэффициентов полностью соответствуют минимальному нормативному уровню, то индекс Z равен 1. Финансовое состояние компании, имеющее рейтинговое число менее 1 расценивается как неудовлетворительное.
Совместно с множественным дискриминантным анализом прогнозирования банкротств заемщиков могут использоваться также упрощенные модели, которые основаны на системе определенных показателей. Пример такого подхода – это система показателей Бивepa, которая включает:
Для классификации кредитов на практике может быть использована модель САRT. Модель САRT расшифровывается как «классификационные и регрессионные деревья» (Сlassification аnd regrеssion trees). Главными достоинствами этой непараметрической модели являются возможность широкого применения, её легкость вычислений и доступность для понимания, однако построение таких моделей требует применения сложных статистических методов. Эту модель называют ещё «рекурсивным разбиением». Осознать «классификационные и регрессионные деревья» можно путем разбивки на «ветви» согласно значениям выбранных финансовых коэффициентов. При этом, каждая «ветвь» дерева, делится на «ветви» в соответствии с другим коэффициентом. Точность классификации составляет приблизительно 90. На Рисунке 2.2. представлено «классификационное дерево» для выявления компаний-банкротов.
Нераспределенная прибыль / Совокупные активы |
≤ 0,145
Нераспределенная прибыль / Совокупные активы |
B |
S |
Рисунок 2.2. «Классификационное дерево» для выявления компаний-банкротов
При использовании математических методов при управлении кредитами, банку необходимо учитывать, что предоставление кредитов не является чисто механическим актом. Это трудоемкий процесс, в котором важны не только человеческие взаимоотношения между сторонами, но и понимание технического обеспечения. В математических моделях не учитываются межличностные отношения. А на практике кредитного анализа и кредитования необходимо учитывать этот фактор.