Автор работы: Пользователь скрыл имя, 30 Сентября 2011 в 19:48, реферат
Цель контрольной работы является раскрытие общей характеристики формирования портфеля ценных бумаг.
Задачи контрольной работы:
1. раскрытие понятия портфеля ценных бумаг и основных принципов его формирования;
2. рассмотрение моделей управления портфелем ценных бумаг;
3. отражение моделей оптимального портфеля ценных бумаг;
Введение 3
Глава 1. Портфельное инвестирование 5
1.1. Основные принципы формирования портфеля инвестиций 5
1.2. Характеристика основных видов ценных бумаг и оценка их доходности 9
1.2.1. Акции 9
1.2.2. Облигации 12
Глава 2. Методики формирования оптимальной структуры портфеля 14
2.1. Модель Марковица 14
2.2.. Индексная модель Шарпа 21
Заключение 23
Задача 24
Список используемой литературы 25
, (9)
где Xi – доля общего вложения, приходящаяся на i-ю ценную бумагу;
mi – ожидаемая доходность i-й ценной бумаги, %;
mp – ожидаемая доходность портфеля, %
и мерой риска – среднеквадратическим отклонением доходности от ожидаемого значения
(10)
где sp – мера риска портфеля;
sij – ковариация между доходностями i-й и j-й ценных бумаг;
Xi и Xj – доли общего вложения, приходящиеся на i-ю и j-ю ценные бумаги;
n – число ценных бумаг портфеля.
Ковариация доходностей ценных бумаг (sij) равна корреляции между ними, умноженной на произведение их стандартных отклонений:
(11)
где rij – коэффициент корреляции доходностей i-ой и j-ой ценными бумагами;
si, sj – стандартные отклонения доходностей i-ой и j-ой ценных бумаг.
Для i = j ковариация равна дисперсии акции.
Рассматривая теоретически предельный случай, при котором в портфель можно включать бесконечное количество ценных бумаг, дисперсия (мера риска портфеля) асимптотически будет приближаться к среднему значению ковариации.
Графическое
представление этого факта
sp
Собственный риск
Общий риск портфеля
Рыночный риск
N
Рисунок 2.1 – Риск портфеля и диверсификация
Совокупный риск портфеля можно разложить на две составные части: рыночный риск, который нельзя исключить и которому подвержены все ценные бумаги практически в равной степени, и собственный риск, который можно избежать при помощи диверсификации. При этом сумма вложенных средств по всем объектам должна быть равна общему объему инвестиционных вложений, т.е. сумма относительных долей в общем объеме должна равняться единице.
Проблема
заключается в численном
Отобранные таким образом портфели объединяют в список, содержащий сведения о процентом составе портфеля из отдельных ценных бумаг, а также о доходе и риске портфелей.
Объяснение того факта, что инвестор должен рассмотреть только подмножество возможных портфелей, содержится в следующей теореме об эффективном множестве: «Инвестор выберет свой оптимальный портфель из множества портфелей, каждый из которых обеспечивает максимальную ожидаемую доходность для некоторого уровня риска и минимальный риск для некоторого значения ожидаемой доходности». Набор портфелей, удовлетворяющих этим двум условиям, называется эффективным множеством.
На рисунке представлены недопустимые, допустимые и эффективные портфели, а также линия эффективного множества.
R2
R1
s1
s2
Доход
Риск
Область допустимых портфелей
Недопустимые портфели
Эффективные портфели
Допустимые, но
неэффективные портфели
Эффективное множество
Рисунок 2.2 – Допустимое и эффективное множества
В модели Марковица допустимыми являются только стандартные портфели (без коротких позиций). Использую более техническую терминологию, можно сказать, что инвестор по каждому активу находится в длинной позиции. Длинная позиция – это обычно покупка актива с намерением его последующей продажи (закрытие позиции). Такая покупка обычно осуществляется при ожидании повышения цены актива в надежде получить доход от разности цен покупки и продажи.
Из-за недопустимости коротких позиций в модели Марковица на доли ценных бумаг в портфели накладывается условие не отрицательности. Поэтому особенностью этой модели является ограниченность доходности допустимых портфелей, т.к. доходность любого стандартного портфеля не превышает наибольшей доходности активов, из которых он построен.
Для выбора наиболее приемлемого для инвестора портфеля ценных бумаг можно использовать кривые безразличия. В данном случае эти кривые отражают предпочтение инвестора в графической форме. Предположения, сделанные относительно предпочтений, гарантируют, что инвесторы могут указать на предпочтение, отдаваемое одной из альтернатив или на отсутствие различий между ними.
Если
же рассматривать отношение
Располагая
информацией об ожидаемой доходности
и стандартных отклонениях
Различные позиции инвесторов по отношению к риску можно представить в виде карт кривых, отражающих полезность вложений в те или иные инвестиционные портфели (рисунок 2.3). Каждая из указанных на рисунке 2.3 позиций инвестора к риску характерна тем, что любое уменьшение им риска сказывается на сокращении доходности и стандартном отклонении каждого из портфелей. И поскольку портфеля включает в себя набор различных бумаг, то вполне объяснимым является зависимость его от ожидаемой доходности и стандартного отклонения его от ожидаемой доходности и стандартного отклонения каждой ценной бумаги, входящей в портфель.
sp
I1
I2
I3
а) Инвестор с высокой степенью избегания риска
rp
sp
I2
I1
I3
б) Инвестор со средней степенью избегания риска
rp
sp
I3
I2
I1
в) Инвестор с низкой степенью избегания риска
Рисунок 2.3 – Карты кривых безразличия инвесторов
Инвестор должен выбирать портфель, лежащий на кривой безразличия, расположенной выше и левее всех остальных кривых. В теореме об эффективном множестве утверждается, что инвестор не должен рассматривать портфели, которые не лежат на левой верхней границе множества достижимости, что является ее логическим следствием. Исходя из этого, оптимальный портфель находится в точке касания одной из кривых безразличия самого эффективного множества. На рисунке 2.4 оптимальный портфель для некоторого инвестора обозначен O*.
O*
rp
sp
I1
I2
I3
Определение кривой безразличия клиента является нелегкой задачей. На практике ее часто получают в косвенной или приближенной форме путем оценки уровня толерантности риска, определяемой как наибольший риск, который инвестор готов принять для данного увеличения ожидаемой доходности.
Поэтому, с точки зрения методологии модель Марковица можно определить как практически-нормативную, что не означает навязывания инвестору определенного стиля поведения на рынке ценных бумаг. Задача модели заключается в том, чтобы показать, как поставленные цели достижимы на практике.
В 1960-х годах Уильям Шарп первым провел регрессионный анализ рынка акций США. Для избежание высокой трудоемкости Шарп предложил индексную модель. Причем он не разработал нового метода составления портфеля, а упростил проблему таким образом, что приближенное решение может быть найдено со значительно меньшими усилиями.
Шарп ввел b-фактор, который играет особую роль в современной теории портфеля.
, (12)
где siM – ковариация между темпами роста курса ценной бумаги и темпами роста рынка;
s2M – дисперсия доходности рынка.
Показатель
«бета» характеризует степень риска
бумаги и показывает, во сколько
раз изменение цены бумаги превышает
изменение рынка в целом. Если
бета больше единицы, то данную бумагу
можно отнести к инструментам
с повышенной степенью риска, т.к. ее
цена движется в среднем быстрее
рынка. Если бета меньше единицы, то степень
риска этой бумаги относительно низкая,
поскольку в течение периода
глубины расчета ее цена изменялась
медленнее, чем рынок. Если бета меньше
нуля, то в среднем движение этой
бумаги было противоположно движению
рынка в течение периода
В индексной модели Шарпа используется тесная корреляция между изменением курсов отдельных акций. Предполагается, что необходимые входные данные можно приблизительно определить при помощи всего лишь одного базисного фактора и отношений, связывающих его с изменением курсов отдельных акций. Как правило за такой фактор берется значение какого-либо индекса. Зависимость доходности ценной бумаги от индекса описывается следующей формулой:
, (13)
где ri – доходность ценной бумаги i за данный период;
rI – доходность на рыночный индекс I за этот же период;
aiI – коэффициент смещения;
b iI – коэффициент наклона;
e iI – случайная погрешность.
<