Автор работы: Пользователь скрыл имя, 08 Ноября 2010 в 16:49, Не определен
обоснование выбора типа модели
Очень часто на практике встречаются объекты, в которых заявка проходит обслуживание в определенной последовательности во многих устройствах. В качестве модели таких объектов обычно выбирают сетевые модели (СМ).
В этом случае модель вычислительной системы (ВС) представляется как совокупность взаимосвязанных систем массового обслуживания (СМО), для описания процессов функционирования которых используются модели теории массового обслуживания.
Обычно сетевые модели ВС широкого класса строятся из набора типовых СМО: одно- и многоканальных. В этот набор могут входить СМО, имитирующие обслуживание заявок различными элементами аппаратного и программного обеспечения ВС, в частности устройствами типа процессор, оперативная память, селекторный канал, а также элементами, служащими источниками и приёмниками заявок. Т. о. Каждая СМО ставится в соответствие какому-то устройству реального объекта.
Различают разомкнутые и замкнутые сети. В разомкнутых сетях заявки поступают из внешнего источника. Интенсивность этого источника не зависит от состояния сети, т. е. от количества заявок уже поступивших в сеть. Для замкнутых сетей характерным является постоянство числа циркулирующих в них заявок (внешние источники в замкнутых сетях отсутствуют).
Разомкнутые сети обычно используются в качестве модели систем оперативной обработки (СОО), а замкнутые – как модели систем пакетной обработки (СПО).
В
рамках данной курсовой работы будет
выполнено моделирование
Определим модель системы пакетной обработки. СПО – ВС, выполнение работ в которых организуется путем загрузки в систему пакета задач, обрабатываемых в порядке ориентированном на минимизацию времени обработки всего пакета.
После ввода пакета ВС выполняет работы из него. При этом все прочие работы ожидают момента завершения обработки пакета. Следовательно, в качестве модели СПО выберем замкнутую СМ, так как в замкнутых СМ число заявок, циркулирующих в них, всегда постоянно.
В замкнутой СМ выделяется дуга, по которой заявка, соответствующая завершенной работе, инициирует заявку на выполнение новой работы. Обычно такая дуга помечается точкой «0». Условно эту систему называют нулевой системой. Время обслуживания заявки в нулевой системе равно 0. Количество заявок, проходящих в сети по отмеченной дуге за единицу времени, определяет производительность СПО. Значение не зависит от каких-либо внешних причин, а определяется конфигурацией и параметрами сети.
Вся информация, относящаяся к пакету, вводится в память до начала его решения. Тогда за время решения пакета основной поток запросов формируется на обработку и обращения к ВЗУ. Т. е. процесс решения задачи представляется произвольной последовательностью этапов счета и обращений к файлам. Множество файлов , используемых в процессе решения задач, размещается во внешней памяти системы. В рамках данного курсового проекта предполагается, что внешняя память ВС может состоять из накопителей двух типов: НМЛ и НМД.
Вследствие того, что к различным файлам производится разное число обращений при решении задач, естественно предположить, что файлы, сравнительно редко используемые в процессе решения задач, могут располагаться как в НМЛ, так и в НМД, в то время как файлы, частота обращений к которым велика, должны размещаться в НМД как устройствах внешней памяти с меньшим временем доступа.
Определим суммарный объем файлов G с которыми работает система:
Т. к. суммарный объем G не превышает емкость НМД, то в систему будут включен единственный НМД, на котором расположены файлы F1, F2, F8.
В качестве модели НМД будем использовать одноканальную СМО.
Для пересылки данных из ВЗУ в ОП используется селекторный канал (СК), к которому подключается ВЗУ (НМД). В качестве модели СК используется одноканальная СМО со своей очередью. Тогда схема модели системы пакетной обработки будет иметь вид, представленный на рис.1, где:
П-ОП – процессор и оперативная память;
НМД – накопитель на магнитном диске;
СК – селекторный канал.
Построим граф модели СПО:
S1 – СМО моделирует П-ОП
S2 - СМО моделирует НМД
S3 - СМО моделирует СК
К параметрам модели относятся следующие величины:
Из приведенной выше схемы модели СПО следует, что N=3.
В нашей модели все СМО являются одноканальными, следовательно:
где - вероятность того, что заявка, покидающая систему , поступит в систему (i, j = 1,..,3).
Подсчитаем вероятности переходов системы. Очевидно, что:
Чтобы найти вероятности остальных передач, найдем суммарное число обращений к файлам Q:
Тогда:
Так как:
То:
M=1,3,5.
Для расчета некоторых нам понадобятся значения коэффициентов передач.
где: n – число файлов; - число обращений к файлу ; - средняя длина записи файла ; -быстродействие устройства, в нашем случае = .
Коэффициент передачи определяется относительно нулевой системы. Из системы уравнений следует:
Как видим, значение совпадает с числом этапов обслуживания в i – ой системе, которое проходит каждая заявка, поступающая в СПО, т. е. равно среднему числу обращений к i – му устойству при выполнении одной задачи.
Теперь можно определить время обслуживания заявки в процессоре. Оно определяется как среднее арифметическое от времени обслуживания заявки в каждой из СМО с учетом коэффициентов передач:
Вероятности состояний замкнутой сети определяются следующим выражением:
(1)
где:
Здесь
Ki – число каналов (приборов) в i-й
системе. Символ
означает, что суммирование производится
по всем возможным наборам mi
,…, mN, для которых выполняется условие
. mi – говорит о том, что в
i – ом узле m заявок. M=1, число СМО N=3, тогда
число возможных состояний найдем как:
Перечислим эти состояния: (1,0,0), (0,1,0), (0,0,1).
для всех i=1..3, так как все СМО у нас одноканальные.
Для
вычисления вероятностей возможных состояний
нам в дальнейшем потребуются значения
произведений
в соответствующих степенях:
Устройство | |||||
П-ОП (i=1) | 1,3664 | 1,867 | 2,551 | 3,4859 | 4,7631 |
НМД (i=2) | 1,89 | 3,5721 | 6,7513 | 12,76 | 24,1162 |
СК (i=3) | 0,8438 | 0,7119 | 0,6007 | 0,507 | 0,4276 |
Теперь отдельно вычислим знаменатель выражения (1):
Тогда:
Для М=1 имеем, что , тогда:
Интенсивность входного потока – это число заявок, поступающих в единицу времени на вход соответствующей СМО.
Общая формула для расчета: .
Найдем :
Остальные найдем через коэффициенты передач:
Время цикла относительно i – ого узла – это среднее время от момента входа (выхода) одной и той же заявки в этот i – ый узел. Общая формула:
Определим
время цикла для нулевой
Общая формула для расчета:
Число заявок в системе M=3, число СМО N=3, тогда число возможных состояний найдем как:
Перечислим эти состояния: (3,0,0), (2,1,0), (2,0,1), (1,2,0), (1,1,1), (1,0,2), (0,3,0), (0,2,1), (0,1,2), (0,0,3).
для всех i=1..3, так как все СМО у нас одноканальные.
Теперь отдельно вычислим знаменатель выражения (1):
Вероятности
всех состояний представим в виде
таблицы, опустив множество формул
их определения:
Вероятности | ||
P1 |
(3,0,0) | 0,0967 |
P2 | (2,1,0) | 0,1338 |
P3 | (2,0,1) | 0,0597 |
P4 | (1,2,0) | 0,1851 |
P5 | (1,1,1) | 0,0437 |
P6 | (1,0,2) | 0,0369 |
P7 | (0,3,0) | 0,256 |
P8 | (0,2,1) | 0,1143 |
P9 | (0,1,2) | 0,051 |
P10 | (0,0,3) | 0,0228 |