Автор работы: Пользователь скрыл имя, 23 Декабря 2011 в 21:05, реферат
Генераторами являются такие схемы, которые производят периодические колебания различных форм, например, прямоугольные, треугольные, пилообразные и синусоидальные. В генераторах обычно применяются различные активные компоненты, лампы или кварцевые резонаторы, а так же пассивные - резисторы, конденсаторы, индуктивности.
Лампа имеет эффективную низкочастотную тепловую постоянную времени, tthermal [5]. При подходе частоты генерации fOSC к tthermal искажения выходного сигнала сильно возрастают. Для уменьшения искажений можно применить последовательное соединение нескольких ламп, что увеличит tthermal. Недостатки этого способа в том, что время, необходимое для стабилизации колебаний увеличивается и амплитуда выходного сигнала уменьшается.
Схема с автоматической регулировкой усиления (АРУ) должна применяться в случае, если ни одна из предыдущих схем не обеспечивает достаточно низкий уровень искажений. Схема типичного генератора с АРУ на мосте Вина изображена на рисунке 12; на рисунке 13 показаны осциллограммы этой схемы. АРУ используется для стабилизации амплитуды выходного синусоидального сигнала до оптимальной величины. Полевой транзистор применён в качестве регулирующего элемента АРУ, обеспечивающего превосходное управление из-за широкого диапазона сопротивления сток-исток, которое зависит от напряжения на затворе. Напряжение на затворе транзистора равно нулю, когда подаётся напряжение питания, и соответственно сопротивление сток-исток (RDS) будет низкое. При этом сопротивления RG2+RS+RDS соединяются параллельно с RG1, что повышает коэффициент усиления до 3,05, и схема начинает генерировать колебания, которые постепенно увеличиваются по амплитуде. По мере роста выходного напряжения отрицательная полуволна сигнала открывает диод, и конденсатор C1 начинает заряжаться, что обеспечивает постоянное напряжение на затворе транзистора Q1. Резистор R1 ограничивает ток и устанавливает постоянную времени заряда конденсатора C1 (которая должна быть гораздо больше периода частоты fOSC). Когда коэффициент усиления достигнет трёх, то выходной сигнал стабилизируется. Искажение АРУ составляют менее 0,2%.
Схема на рисунке 12 имеет смещение VREF для однополярного питания. Последовательно с диодом можно включить стабилитрон, что бы уменьшить амплитуду выходного сигнала и снизить искажения. Можно применить двухполярное питание, для этого надо соединить с общим проводом все проводники, ведущие к VREF. Существует большое разнообразие схем генераторов на основе моста Вина с более точным управлением уровнем выходного сигнала, позволяющих ступенчато переключать частоту генерации или плавно её регулировать. Некоторые схемы используют ограничители на диодах, установленных в качестве нелинейных компонентов обратной связи. Диоды уменьшают искажения выходного сигнала путём мягкого ограничения его напряжения.
Рис. 12. Генератор на мосте Вина с АРУ.
Рис. 13. Выходной сигнал схемы с рисунка 12.
8.2. Генератор на основе сдвига фаз с одним ОУ.
Генераторы на основе сдвига фаз производят меньше искажений, чем генераторы на основе моста Вина, имея ещё и хорошую стабильность частоты. Такой генератор может быть построен с одним ОУ, как показано на рисунке 14. Три RC звена соединены последовательно, чтобы получить крутой наклон dφ/dω, необходимый для стабильной частоты колебаний, как это описано в разделе 3. Применение меньшего количества RC звеньев приводит к высокой частоте колебаний, ограниченной полосой пропускания ОУ.
Рис. 14. Генератор на основе сдвига фаз с одним ОУ.
Рис. 15. Выходной сигнал схемы с рисунка 14.
Как правило,
считается, что фазосдвигающие цепи
являются независимыми друг от друга,
что позволяет вывести
(14)
Частота колебаний с номиналами компонентов, показанных на рисунке 14, составляет 3,767 кГц, а расчётная частота составляет 2,76 кГц. Кроме того, коэффициент усиления, требуемый для возникновения генерации, равен 27, а расчётный равен 8. Это расхождение частично возникает из-за разброса параметров компонентов, однако главным фактором является неверное предположение, что RC звенья не нагружают друг друга. Эта схема была очень популярна, когда активные компоненты были большими и дорогими. Но теперь ОУ недороги, малы, и в одном корпусе содержится 4 ОУ, поэтому генератор на основе фазосдвигающей цепи на одном операционном усилители теряет популярность. Искажения выходного сигнала составляют 0,46%, что значительно меньше, чем в схеме генератора на основе моста Вина без стабилизации амплитуды.
8.3. Буферированный генератор на основе сдвига фаз
Буферизованный генератор на основе сдвига фаз намного лучше небуферизованной версии, но платой за это является большее число применённых компонентов. На рисунках 16 и 17 изображён буферизированный генератор на основе сдвига фаз, и соответственно выходной сигнал. Буферы предотвращают RC цепи от нагружения друг друга, поэтому параметры буферизированного генератора на основе сдвига фаз лежат гораздо ближе к расчётным значениям частоты и коэффициенту усиления. Резистор RG, устанавливающий коэффициент усиления, нагружает третье RC звено. Если буферизировать это звено с помощью четвёртого ОУ, то параметры генератора станут идеальными. Синусоидальный сигнал с низкими искажениями может быть получен любым генератором на основе сдвига фаз, но наиболее чистый синус получается на выходе последнего RC звена генератора. Это высокоомный выход, поэтому высокое входное сопротивление нагрузки обязательно для предотвращения перегрузки и как следствия, изменения частоты генерации из-за вариаций параметров нагрузки.
Частота генерации схемы составляет 2,9 кГц по сравнению с идеальной расчётной частотой 2,76 кГц, коэффициент усиления был равен 8,33, что близко к расчётному, равному 8. Искажения составляли 1,2%, что значительно больше, чем у небуферизованого фазового генератора. Эти расхождения параметров и сильные искажения возникают из-за большого номинала резистора обратной связи RF, который совместно с входной ёмкостью ОУ CIN создаёт полюс, лежащий поблизости от частоты 5 кГц. Резистор RG всё ещё нагружает последнее RC звено. Добавление буфера между последним RC звеном и выходом VOUT снизит усиление и частоту генерации до расчётных значений.
Рис. 16. Буферированный генератор на основе сдвига фаз.
Рис. 17. Выходной сигнал схемы с рисунка 17.
8.4. Генератор Буббы
Генератор Буббы, схема которого приведена на рисунке 18, является ещё одним генератором на основе сдвига фаз, но здесь используется выгода от применения счетверённого операционного усилителя, что приносит уникальные преимущества. Четыре RC звена требуют фазовый сдвиг по 45° в каждом звене, так что этот генератор имеет отличную d&phi/dt, что приводит к минимальному дрейфу частоты. Каждая из RC секций вносит фазовый сдвиг в 45°, поэтому снимая сигнал с разных звеньев можно получить низкоомный квадратурный выход. При снятии сигналов с выходов каждого из ОУ можно получить четыре синусоиды со сдвигом фаз по 45°. Уравнение (15) описывает петлю обратной связи. При ω = 1/RCs, уравнение 15 упрощается до уравнений (16) and (17). (15)
(16)
(17)
Рис. 18. Генератор Буббы.
Рис. 19. Выходной сигнал схемы с рисунка 18.
Что бы генерация возникла усиление A должно быть равно 4. Частота колебаний испытательной схемы составляла 1.76 кГц, при этом расчётное значение составляет 1.72 кГц, и соответственно усиление было равно 4.17 при расчётном значении, равном 4. Форма выходного сигнала показана на рисунке 19. Искажение составляют 1.1% для VOUTSINE и 0.1% for VOUTCOSINE. Синусоидальный сигнал с очень низкими искажениями может быть получен из точки соединения резисторов R и RG. Когда сигнал с низким уровнем искажений необходимо снимать со всех выходов, то общее усиление должно быть распределено среди всех ОУ. На неинвертирующий вход усиливающего ОУ подано напряжение смещения 2.5 вольт, что бы установить напряжение покоя равным половине напряжения питания при использовании однополярного источника, если же используется двухполярный источник питания то неинвертирующий вход следует заземлить. Распределение усиления между всеми ОУ требует применение смещения для них, но это никак не воздействует на частоту генерации.
8.5. Квадратурный генератор
Квадратурный генератор, изображённый на рисунке 20 является другим типом генератора на основе сдвига фаз, но три RC звена настроены так, что каждое звено вносит фазовый сдвиг по 90°. Это обеспечивает на выходе как синусоидальный, так и косинусоидальный сигнал (выходы являются квадратурными, с разностью фаз по 90°), что является явным преимуществом перед другими генераторами на основе фазовых сдвигов. Идея квадратурного генератора лежит в использовании того факта, что двойное интегрирование синусоиды даёт инвертирование сигнала, то есть происходит сдвиг сигнала по фазе на 180°. Фаза второго интегратора тогда инвертируется и используется как положительная ОС, что приводит к возникновению генрации [6].
Усиление петли обратной связи рассчитывается по уравнению (18). При R1C1 = R2C2 =R3C3 уравнение (18) упрощается до (19). Когда ω = 1/RC, уравнение (18) упрощается до 1∠–180, так что генерация возникает на частоте ω = 2πf = 1/RC. У испытательной схемы колебания возникают на частоте 1.65 кГц, что немного отличается от расчётной частоты, равной 1.59 кГц, как показано на рисунке 21. Это расхождение объясняется разбросом параметров компонент. Оба выхода имеют относительно высокие искажения, которые могут быть уменьшены при использовании АРУ. Синусоидальный выход имел коэффициент искажений 0,846%, косинусоидальный - 0,46%. Регулировка усиления может увеличить амплитуду выходного сигнала. Недостатком такого генератора является уменьшенная полоса пропускания.
(18)
(19)
Рис. 20. Схема квадратурного генератора.
Рис. 21. Выходной сигнал схемы с рисунка 20.
9. Заключение
Генераторы
на ОУ имеют ограничение по рабочей
частоте, так как у них нет
необходимой ширины полосы пропускания
для получения малого сдвига фаз
на высоких частотах. Новые операционные
усилители с обратной связью по току
имеют гораздо более широкую
полосу пропускания, но их очень сложно
использовать в схемах генераторов,
так как они очень
Генератор на
основе моста Вина содержит немного
компонентов и имеет хорошую
стабильность частоты, но базовая схема
имеет высокий коэффициент
10. Ссылки
Информация о работе Генераторы гармонических сигналов на операционных усилителях