Влияние вакуумного ультрафиолета на гемоглобин

Автор работы: Пользователь скрыл имя, 04 Октября 2009 в 22:55, Не определен

Описание работы

Биофизика, влияние вакуумного ультрафиолета на гемоглобин

Файлы: 1 файл

DEA.doc

— 2.42 Мб (Скачать файл)

1.4 Действие вакуумного  УФ-излучения на  аминокислоты и

  белковые системы

      Исследования  фотопроцессов, происходящих в белках и их компонентах под влиянием вакуумного УФ-излучения (λ<200 нм), имеют важное значение для выяснения механизма его биологического действия, а также связаны с проблемой абиогенного фотосинтеза биологических молекул в космическом пространстве и в период биохимической эволюции на Земле. Так, в работах Н.Я. Додоновой и соавт. (Н.Я. Додонова, А.И. Сидорова, 1961, 1962; Н.Я. Додонова, 1962) установлено, что при освещении смесей природных газов: аммиака, паров воды, метана и диоксида углерода светом водородной лампы с многолинейчатым и сплошным спектром в ВУФ-области происходит фотосинтез аминокислот, гидразина, формальдегида и мочевины.

      Высказывается предположение, что формальдегид и  мочевина являются промежуточными продуктами в процессе синтеза аминокислот. При этом действующая спектральная область при фотосинтезе аминокислот в смеси газов определена от 180 до 145 нм. Позже этими же авторами (Н.Я. Додонова, Н.М. Цыганенко, 1990; Н.Я. Додонова и соавт., 1994) было показано, что под действием вакуумного ультрафиолета в области 120 – 160 нм происходит усложнение биологически важных молекул. Анализ фотоустойчивости образующихся соединений к этому излучению проведен в работах (N.Ya. Dodonova et al., 1982; М.Н. Киселева и соавт., 1989).

      Выявление биологических эффектов ВУФ-излучения затруднено тем обстоятельством, что его кванты поглощаются кислородом воздуха, а также кварцем и стеклом. Кроме того, поскольку длина проникновения ВУФ-света в вещество невелика, для исследований на молекулярном уровне применяются пленки толщиной порядка 0,1 мкм. Известно, что при длинах волн, меньших 200 нм, вода характеризуется сильным поглощением, и водные растворы применяться не могут (L.R. Painter et al., 1969).

      При действии вакуумного ультрафиолета  на компоненты белков в них происходят одноквантовые процессы фотодиссоциации  и фотоионизации. Пороговые значения фотоионизации полипептидов и белков составляют 8  эВ. При уменьшении длины волны возбуждения до 122 нм происходит увеличение эффективности фотоионизации белков, о чем свидетельствует увеличение квантового выхода инактивации до единицы (R. Settlow et al., 1959). 

      Для всех аминокислот основной вклад  в полную ионизацию вносят процессы диссоциативной фотоионизации, причем в алифатических аминокислотах они связаны с разрывом связей, находящихся в β-положении к аминогруппе с сохранением заряда на осколке, содержащем атом азота, под действием квантов света с энергией до 14 эВ. Это указывает на удаление одного из электронов неподеленной пары атома азота при фотоионизации алифатических аминокислот. Потенциал ионизации этих аминокислот составляет 8,5 – 9 эВ. Для ароматических аминокислот характерно участие в ионизации π-электронов сопряженных систем. Присутствие гетероатома в боковой цепи молекулы облегчает процесс фотоионизации, поэтому потенциалы ионизации ароматических аминокислот ниже, чем для алифатических, и составляют для фенилаланина и тирозина 8,4 эВ, а для триптофана – 7,5 эВ (М.Е. Акопян, Ю.В. Логинов, 1967).

      Исследования  аминокислот в области 120 – 280 нм в слоях, полученных напылением в вакууме, позволили получить их спектры поглощения, люминесценции и оценить относительный спектральный выход люминесценции. Полосы у 120 и 160 нм в спектрах поглощения приписываются СООН-группе, а полосы у 140 и 190 нм – пептидной связи (И.П. Виноградов, Н.Я. Додонова, 1971). При возбуждении ароматических аминокислот монохроматическим светом с длинами волн 120 и 160 нм при 90 К в спектрах люминесценции указанных аминокислот наблюдаются полосы флуоресценции для триптофана, тирозина и фенилаланина с максимумами около 350, 320, 293 нм соответственно и полосы фосфоресценции 445, 410, 410 нм соответственно (И.П. Виноградов, Н.Я. Додонова, 1971а). На основании этого сделано предположение, что возможна передача энергии с пептидных связей на триптофан для триптофансодержащих белков только в области слабых n-π переходов пептидных связей на 230 нм, а не в области их наиболее интенсивного поглощения на 140 и 190 нм (И.П. Виноградов, Н.Я. Додонова, 1971б). Поглощение тирозином излучения ксеноновой и криптоновой ламп приводит к возбуждению как фенольного кольца названой аминокислоты, так и σ-связи боковой группы тирозина, что, по всей видимости, может привести к димеризации близко расположенных и соответственно ориентированных в кристаллической фазе молекул этой аминокислоты с образованием пептидных связей (Е.В. Хорошилова и соавт., 1991). 

      Анализ  экспериментальных данных, касающихся фото- и радиационно-химических изменений  биохимически важных соединений, позволил бы не только резистентные молекулы мономеров, но и наметить некоторые модельные подходы к установлению возможных путей эволюции структуры макромолекул, в частности, белков. Так, ВУФ-облучение (145, 175 нм) дипептидов тирозил-тирозина и глицил-триптофана, а также γ-облучение (Cs137) глицил-триптофана приводит к деструкции как пептидных связей, так и аминокислотных компонентов дипептида. Устойчивость ароматических аминокислот и их дипептидов к ВУФ-излучению возрастает в ряду: глицил-триптофан – триптофан, тирозин – тирозил-тирозин. Эффективность деструкции триптофана и глицил-триптофана при γ-облучении приблизительно в 1000 раз больше, чем при ВУФ-излучении. При ВУФ-облучении, в противоположность действию γ-излучения, распад дипептида глицил-триптофана происходит более интенсивно, чем радиолиз триптофана вследствие избирательного поглощения ВУФ-излучения (145, 175 нм) пептидной группой (М.Ю. Петров, 1996).

      В спектрах поглощения белков имеется  полоса с максимумом около 190 нм, определяемая поглощением пептидных групп, и возрастающее от 160 нм в сторону коротких длин волн поглощение, связанное в основном с возбуждением электронов σ-связи аминокислотных остатков и S0-Sn переходами ароматических групп аминокислот, входящих в состав гистонов (Н.М. Цыганенко и соавт., 1987).

     Таким образом, в ВУФ-области спектра  поглощают алифатические аминокислоты, боковые группы ароматических аминокислот  и пептидные группы белков, что  дает возможность использовать эти  сведения для анализа спектральных свойств белков после их облучения вакуумным УФ-светом 
 
 
 
 
 
 
 

Глава 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 

2.1. Цель и задачи  исследования 

     Целью данной работы явилось изучение закономерностей фотопревращений гемоглобина человека после воздействия ВУФ-излучения на молекулы этого транспортного белка крови.

     Задачи  исследования:

  1. изучение методик приготовления тонких плёнок белка (~ 0,1мкм);
  2. облучение тонких плёнок светом аргоновой лампы барьерного разряда в диапазоне длин волн 118-134 нм (λmax=126 нм);
  3. изучение оптических свойств молекул гемоглобина человека, подвергшихся ВУФ-облучению в дозе 1,8 кДж/м².
 
 
 

2.2. Объект и методы исследования 

2.2.1. Объект исследования 
 
 

       Объектом  исследования стал гемоглобин человека (в концентрациях 10 -10 моль/л). Оксигемоглобин выделяли по методу, описанному Драбкиным Оксигемоглобин выделяли по методу, описанному Драбкиным (D.L. Drabkin, 1946) с модификациями Блюменфельда (Л.А. Блюменфельд, 1957). . В основе этого метода лежит явление гемолиза эритроцитов под действием воды. 
 
 

       2.2.2. Методика приготовления  тонких пленок  гемоглобина 

       Для получения тонкой пленки супернатант  с концентрацией белка 10 -10 моль/л в объеме 10 мкл наносили на подложку из фтористого магния (d=30мм, толщина 1 мм(А.Н. Зайдель, Е.Я. Шрейдер, 1967))  и механически равномерно распределяли по всей её поверхности, затемоставляли до полного высыхания в суховоздушном термостате при t=37,00±0,01ºC в течение 60 мин. Толщина пленок белка, измеренная при помощи интерференционного микроскопа МИИ – 4 «Ломо» Россия, составляет 0,1 мкм составляла порядка 0,1 мкм.

       Выбор фтористого магния в качестве материала  дл нанесения образцов обусловлен широким интервалом спектрального пропускания от 0,113 до 9 мкм, что позволяет использовать их для изучения спектрофотометрическим методом структурных изменений молекул во всем оптическом диапазоне (Л.П. Шишацкая и др., 1988). Кристаллы фтористого магния более стойки, чем, например фтористый литий, к радиационному разрушению, тепловым механическим ударам, и, кроме того они не гигроскопичны. 
 

       2.2.3. Методика облучения  тонких пленок  белка 

       Полученные  пленки белка облучали светом аргоновой  лампы барьерного разряда в диапазоне длин волн 118-134 нм (λmax=126 нм) при помощи установки, собранной на кафедре биофизики и биотехнологии ВГУ. Указанная установка состоит из источника питания лампы, источника ВУФ-облучения, на который помещали подложку с нанесенным на нее образцом. 
 
 

       2.2.4. Регистрация спектров поглощения белковых образцов в видимой области

       Измерение спектров поглощения пленок белка проводили  на спектрофотометре СФ-46 в области длин волн 405, 413, 500, 542, 560, 576 и 630 нм. Контролем служила подложка из фтористого магния без образца. 
 
 
 

       2.3. Полученные результаты  и их обсуждение

       Поглощение энергии ВУФ-излучения в области 118-134 нм хромофорами карбоксильных групп белковых молекул сопровождается возбуждением молекул и переходом электронов на более высокий энергетический уровень (рис. 2). Эти изменения находят отражение в электронных спектрах поглощения белковых молекул, регистрация которых является одним из чувствительных методов измерения изменений состояния белка.

       Таким образом, анализ спектральных характеристик  белковых образцов позволяет получить надежную информацию о состоянии белковых молекул при действии вакуумного ультрафиолетового излучения.

       При облучении пленок гембелка светом аргоновой лампы барьерного разряда в дозе 1,8 кДж/м² нами не зарегистрировано достоверного изменении  структурного состояния гембелка. ВУФ- излучение в области светопоглощения хромофорами карбоксильных групп гембелка (120 нм) не вызывает достоверных изменений структурного состояния гемоглобина человека. 
 
 
 
 
 
 
 
 
 

                                                       2

S                                                         Уровень ионизации     ·АН

       

                                                                                                                   А·+Н

S

         

       

S                            1                    3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Рис.2. Схема одноквантового возбуждения белковых молекул 
 
 
 
 

Таблица 2

Соотношение полос поглощения молекул гемоглобина 

человека  после ВУФ-облучения пленок

Доза  облучения,

кДж/м²

413/405

n=6

500/542

n=6

542/560

n=6

0 1,05±0,32 0,94±0,27 0,97±0,15
1,8 1,22±0,22 0,92±0,23 1,05±0,13

                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ЗАКЛЮЧЕНИЕ  И ВЫВОДЫ

      На  основании проведенных экспериментов  нами были сделаны следующие выводы:

      При ВУФ-облучении (118 – 134 нм) молекул оксигемоглобина  человека в пленках в дозе 1,8 кДж·м² нами не зарегистрировано достоверного изменения структурного состояния гембелка.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   СПИСОК  ЛИТЕРАТУРЫ

  1. Артюхов В.Г. Олигомерные белки: структурно-функциональные модификации и роль субъединичных контактов / В.Г. Артюхов, О.В. Башарина, Г.А. Вашанов и др. – Воронеж: Изд-во ВГУ, 1997. – 261 с.
  2. Артюхов В.Г. Оптические методы исследования биологических систем и объектов / В.Г. Артюхов, М.С. Бутурлакин, В.П. Шмелев. - Воронеж, 1980. – 116 с.
  3. Акопян М.Е. Масс-спектрометрические исследования фотоионизации свободных α-аминокислот / М.Е. Акопян, Ю.В. Логинов // Химия высоких энергий. – 1967. Т. 1, вып. 2. – С. 97 – 102.
  4. Практикум по биофизике / В.Г. Артюхов, М.А. Наквасина, С.Г. Резван и др. – Воронеж, Изд-во ВГУ, 2001. – 223 с.
  5. Блюменфельд Л.А. Гемоглобин и обратимое присоединение кислорода / Л.А. Блюменфельд. – Москва: Сов. Наука, 1957. – 140 с.
  6. Вейсблут М. Физика гемоглобина. Структура и связь / М. Вейсблут. – Москва: Моск. Кн. Изд-во, 1969. – С. 11 – 76.
  7. Веркин Б.И. Источники вакуумного ультрафиолетового излучения / Б.И. Веркин, Э.Т Верховцева, Я.М. Фогель // Физика вакуумного ультрафиолетового излучения. – Киев, 1974. – С. 38 – 58.
  8. Виноградов И.П. Спектры поглощения алифатических аминокислот и простых пептидов в вакуумной ультрафиолетовой области спектра / И.П. Виноградов, Н.Я. Додонова // Опт. И спектр. – 1971. – Т. 30, вып. 1. – С. 27 – 31.
  9. Виноградов И.П. Спектрально люминесцентные исследования ароматических аминокислот в вакуумной ультрафиолетовой области спектра 90 К / И.П. Виноградов, Н.Я. Додонова // Биофизика. – 1971. – Т. 16, вып. 2. – С. 343 – 345.
  10. Виноградов И.П. Спектрально люминесцентные исследования белков в вакуумной ультрафиолетовой области спектра при 72 К / И.П. Виноградов, Н.Я. Додонова // Опт. И спектр. – 1971. – Т. 30, вып. 5. – С. 868 – 871.
  11. Dodonova N.Ya., Kiseleva M.N., Remisova L.A., Tsiganenko N.M. The vacuum ultraviolet photochemistry of nucleotides // Potocem. Potobiol. – 1982. - V.35. - P. 129 – 132.
  12. Додонова Н.Я., Киселева М.Н., Петров М.Ю., Цыганенко Н.М., Чихиржина Г.И. Спектральные исследования хроматина и его компонентов в вакуумной ультрафиолетовой области спектра // Биофизика. – 1984. –Т. 24, вып.6. – С. 961 – 965.
  13. Додонова Н.Я., Цыганенко Н.М., Кузичева Е.А., Симаков М.Б. Абиогенный синтез уридиновых нуклеотидов под действием вакуумного ультрафиолетового излучения // Биофизика. – 1994. – Т. 39, вып. 1. – С. 26 – 31.
  14. Drabkin D.L. Spektrophotometer studies. // The crystallographic and optical properties of the hemoglobin of man in comparison with those of other species // Biol. Chem. – 1946. – V. 164, no. 2. – P. 703 – 723.
  15. Зайдель А.Н., Шрейдер Е.Я. Спектроскопия вакуумного ультрафиолета. – Москва: Изд-во Наука, 1967. – 470 с.
  16. Киселева М.Н., Цыганенко Н.М., Смирнова Т.М., Додонова Н.Я. Фотолиз тотального гистона и ДНК плазмиды pBR-322 в вакуумной ультрафиолетовой области спектра // Биофизика. – 1989. – Т. 34, вып. 4. – С. 536 – 540.
  17. Киселева М.Н., Додонова Н.Я. Люминесценция нуклеогистона, возбуждаемая в области спектра 120 – 350 нм // Биофизика. – 1993. – Т. 38, вып. 3. – С. 421 – 427.
  18. Манойлов Ю.С. Изменение физических свойств гемопротеидов при действии ионизирующего излучения / Ю.С. Манойлов // Проблемы энергетики в облученном организме. – Москва, 1977. С. 10 – 96.
  19. Megumi T., Nishikawa R., Fujita S., Saito M., Ito T. Absorption spectra of viral components of Sendai virus in the wavelength region from 130 to 320 nm // Photochem. Photobiol. – 1991/ - V/ 10, no. 1-2. P. 79 -89.
  20. Munakata N., Saito M., Heida K. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50 – 300 nm) obtained with synchrotron radiation // Potochem. Potobiol. – 1991. - V. 54, no 5. – P.761 – 768.
  21. Сухов Д.А., Додонова Н.Я., Вилесов Ф.И. Исследование фотоэмиссии нуклеиновых кислот и родственных им соединений в области 120 – 250 нм // Биофизика. – 1976. Т. 21, вып. 5. – С. 817 – 819.
  22. Хорошилова Е.В., Цыганенко Н.М., Петров М.Ю., Додонова Н.Я. Фотосинтез пептидов при облучении тирозина вакуумным ультрафиолетовым излучением // Докл. АН СССР. – 1991. – Т. 319, вып. 5. – С. 1244 – 1247.
  23. Цыганенко Н.М., Даниленко Н.В., Додонова Н.Я. О косвенном механизме вакуумного ультрафиолетового фотолиза водных растворов Тимина в области 120 – 170 нм // Биофизика. – 1990. – Т. 35, вып. 3.- С. 391 – 394.
  24. Черкасов Ю.А., Захарова Н.Б., Зеликина Г.Я., Сидорова Е.А. Спектросенситометрические исследования фотографических материалов в вакуумной ультрафиолетовой области спектра // Журн. науч. и прикл. фотогр. и кинематогр. – 1969. – Т. 14, вып. 2. – С. 103 – 111.
  25. Шишацкая Л.П. Применение окон из фтористого магния в мощных дейтериевых лампах / Л.П. Шишацкая, В.С. Гребеньков, В.М. Рейтеров // Оптико–механ. пром. – Москва, 1988. – С. 60 – 62.
  26. Якубке Х.Д. Аминокислоты. Пептиды. Белки / Х.Д. Якубке, Х. Эшкайт. – Москва: Московск. кн. изд-во, 1985. – С. 416 – 419.
  27. Setlow R., Watts G., Douglas c. Inactivation of proteins by vacuum ultraviolet radiation. Proc. 1st. Nat. Biophis. Confr. – 1959. – P 174 – 183. Yale University Press, New Havan, CT.
  28. Wittenberg J.B. On the state of iron and the nature of the ligand in oxyhemoglobin / J.B. Wittenberg, B.A. Wittenberg, J. Peisach // Proc. Nat. Acad. Sci. USA. – 1970. – Vol. 67, - № 4. – Р. 1846 – 1853.

Информация о работе Влияние вакуумного ультрафиолета на гемоглобин