Автор работы: Пользователь скрыл имя, 19 Февраля 2011 в 23:15, реферат
Способы диффузионного переноса многообразны (рис. 1): диффузия жирорастворимых веществ через липидную часть мембраны, перенос гидрофильных веществ через поры, образуемые мембранными липидами и белками, облегченная диффузия с участием специальных молекул-переносчиков, избирательный транспорт ионов через ионные каналы. Однако в процессе эволюции живая клетка создала особый способ переноса, получивший название активного транспорта. В этом случае перенос вещества идет против перепада концентрации и поэтому сопряжен с использованием энергии, универсальным источником которой в клетке является молекула аденозинтрифосфорной кислоты.
На изолированной коже лягушки, разделяющей раствор Рингера, возникает разность потенциалов jвн - jнар (внутренняя сторона кожи положительна по отношению к наружной). В установке имелось специальное устройство: электрическая батарея с потенциометром - делителем напряжения, с помощью которых компенсировалась разность потенциалов на коже лягушки: Dj = jвн - jнар = 0, что контролировалось вольтметром. Кроме того, концентрация ионов натрия с внешней и внутренней сторон поддерживалась одинаковой. При этих условиях, как видно из уравнения Усинга-Теорелла,
jм, вн = jм, нар .
Суммарный
поток ионов через мембрану должен
был бы отсутствовать. Его наличие
свидетельствовало бы о переносе
ионов против перепада концентрации,
то есть об активном переносе. Для доказательства
этого в левую часть
Эти экспериментальные
данные неопровержимо
Дальнейшие
исследования показали, что в биологических
мембранах имеется несколько
разновидностей ионных насосов, работающих
за счет свободной энергии гидролиза
АТФ, - специальные системы
При работе K+-Na+-АТФазы за счет энергии макроэргических связей, освобождающейся при гидролизе каждой молекулы АТФ, в клетку переносятся два иона калия и одновременно из клетки выкачиваются три иона натрия. Таким образом, создаются повышенная по сравнению с межклеточной средой концентрация в клетке ионов калия и пониженная концентрация ионов натрия, что имеет огромное физиологическое значение. Са-АТФаза обеспечивает активный перенос двух ионов кальция, протонная помпа - двух протонов на одну молекулу АТФ.
Молекулярный механизм работы ионных АТФаз до конца не изучен. Тем не менее прослеживаются основные этапы этого сложного ферментативного процесса. В случае К-Na-АТФазы (обозначим ее для краткости Е) насчитываются семь этапов переноса ионов, сопряженных с гидролизом АТФ. Обозначения Е1 и Е2 соответствуют расположению активного центра фермента на внутренней и внешней поверхности мембраны соответственно (аденозиндифосфат - АДФ, неорганический фосфат - P, звездочкой обозначен активный комплекс):
1) E + АТФ E*АТФ,
2) E*АТФ + 3Na [E*АТФ]*Na3 ,
3) [E*АТФ]*Na3 [Е1 ~ P]*Na3 + АДФ,
4) [Е1 ~ P]*Na3 [Е2 ~ P]*Na3 ,
5) [Е2 ~ P]*Na3 + 2K [Е2 - P]*K2 + 3Na,
6) [Е2 - P]*K2 [Е1 - P]*K2 ,
7) [Е1 - P]* E + P + 2K.
На схеме видно, что ключевыми этапами работы фермента являются: 1) образование комплекса фермента с АТФ на внутренней поверхности мембраны (эта реакция активируется ионами магния); 2) связывание комплексом трех ионов натрия; 3) фосфорилирование фермента с образованием аденозиндифосфата; 4) переворот (флип-флоп) фермента внутри мембраны ;5) реакция ионного обмена натрия на калий, происходящая на внешней поверхности мембраны; 6) обратный переворот ферментного комплекса с переносом ионов калия внутрь клетки и 7) возвращение фермента в исходное состояние с освобождением ионов калия и неорганического фосфата (Р). Таким образом, за полный цикл происходят выброс из клетки трех ионов натрия, обогащение цитоплазмы двумя ионами калия и гидролиз одной молекулы АТФ.
Вторичный активный транспорт ионов
Помимо
ионных насосов, рассмотренных выше,
известны сходные системы, в которых
накопление веществ сопряжено не
с гидролизом АТФ, а с работой
окислительно-
В настоящее
время достаточно глубоко исследованы
три схемы вторичного активного
транспорта. Для простоты рассмотрен
транспорт одновалентных ионов
с участием молекул-переносчиков. При
этом подразумевается, что переносчик
в нагруженном или
Встречный
перенос ионов с участием одноместной
молекулы-переносчика получил
Совместный однонаправленный перенос ионов с участием двухместного переносчика называется симпортом. Предполагается, что в мембране могут находиться две электронейтральные частицы: переносчик в комплексе с катионом и анионом и пустой переносчик. Поскольку мембранный потенциал в такой схеме переноса не изменяется, то причиной переноса может быть разность концентраций одного из ионов. Считается, что по схеме симпорта осуществляется накопление клетками аминокислот. Калий-натриевый насос создает начальный градиент концентрации ионов натрия, которые затем по схеме симпорта способствуют накоплению аминокислот. Из схемы симпорта следует, что этот процесс должен сопровождаться значительным смещением осмотического равновесия, поскольку в одном цикле через мембрану переносятся две частицы в одном направлении.
В процессе
жизнедеятельности границы
Такое
обилие систем переноса на первый взгляд
кажется излишним, ведь работа только
ионных насосов позволяет обеспечить
характерные особенности
ЛИПИДНЫЕ ПОРЫ
И ПРОНИЦАЕМОСТЬ МЕМБРАН
С точки зрения проницаемости липидные поры принципиально отличаются от белковых каналов своим происхождением и исключительной динамичностью. В то время как белковые каналы имеют строго определенные размеры, сохраняющиеся в течение всей жизни клетки, размеры липидных пор в процессе затекания варьируют в широких пределах. Однако эта изменчивость имеет предел. Если радиус поры меньше критического, то пора в процессе затекания должна пройти все промежуточные радиусы и достигнуть минимального размера. Вопрос о возможности полного затекания липидных пор остается открытым. Предполагается, что полному затягиванию поры препятствуют мощные силы гидратации, проявляющиеся при сближении стенок гидрофильных пор.
Липидные поры в отличие от белковых ионных каналов не обладают выраженной избирательностью, что коррелирует с их сравнительно большими исходными размерами. Ясно, однако, что в процессе затекания липидные поры могут достигать сколь угодно малых размеров, в том числе сравнимых с размерами белковых ионных каналов, что может приводить к перераспределению ионных токов в мембране , например при возбуждении. Известно далее, что после выключения стрессового воздействия бислойная липидная мембрана может вернуться в состояние с низкой проводимостью, что подразумевает достижение порами размера, недостаточного для прохождения гидратированных ионов. Таким образом, гидрофильные липидные поры универсальны в том отношении, что могут быть использованы клеткой для транспорта высокомолекулярных веществ, ионов и молекул воды.
Исследования проницаемости липидных пор развиваются в настоящее время в двух направлениях: в первом исследуются максимально большие поры , во втором, наоборот, - липидные поры минимального радиуса. В первом случае речь идет об электротрансфекции - способе введения в живые клетки или липосомы молекул ДНК с целью переноса и внутриклеточного введения чужеродного генетического материала. Оказалось, что внешнее электрическое поле высокой напряженности способствует проникновению гигантской молекулы ДНК внутрь мембранной частицы. Как видно из, максимальный размер критической поры соответствует жидкокристаллическому состоянию бислоя липидов при отсутствии внешнего электрического поля и равен 9 нм. Наложение внешнего электрического поля напряженностью 100 кВ/м понижает критический радиус поры до 1 нм за время 0,2 с. Поскольку при этом мембраны сохраняются, то размер липидных пор в них не превышает, очевидно, этого нижнего предела. Парадокс состоит в том, что эффективный диаметр статистического клубка ДНК, которая должна попасть внутрь частицы, достигает 2000 нм. Поистине задача про верблюда, проникающего сквозь игольное ушко. Поэтому очевидно, что молекула ДНК должна проникать через мембрану в виде расплетенной одиночной нити. Известно, что конец нити имеет диаметр 2 нм и таким образом только-только может войти в пору. Однако свободная диффузия нити ДНК в поре при этом вряд ли возможна. К сожалению, механизм этого явления до конца неясен. Предполагается, в частности, что молекула ДНК способна расширить пору и таким образом проскользнуть через мембрану. Проникновению ДНК могут способствовать дополнительные силы электрофореза и электроосмоса с учетом суммарного отрицательного заряда молекулы ДНК. Не исключено, что поры с фиксированными в них концами молекулы ДНК играют роль якоря, удерживающего молекулу в определенном месте у поверхности мембраны везикулы, а сам процесс переноса является разновидностью пиноцитоза. Исследование этого интересного с точки зрения проницаемости явления продолжается.
Второе направление исследования проницаемости мембран с участием липидных пор связано с трансмембранным переносом молекул и ионов воды. Известное в биологии явление высокой водной проницаемости клеточных мембран полностью воспроизводится на искусственных липидных бислоях, что подразумевает участие в этом процессе гидрофильных липидных пор . Большой интерес в этой связи представляют результаты опытов Эламрани и Блума с суспензией липосом из фосфатидной кислоты в температурной области фазового перехода липида из жидкокристаллического состояния в гель. Проницаемость бислоя для молекул воды измеряли в опытах с тяжелой водой, проницаемость для ионов воды - методом рН-скачка.Первое, что можно отметить, - это огромное различие между коэффициентом проницаемости липидного бислоя для гидратированных ионов (ион натрия) и молекул (ионов) воды. Это различие достигает девяти порядков. Столь значительное различие свидетельствует в пользу предположения о том, что в процессе затекания липидные поры могут достигать размера, недостаточного для прохождения гидратированных ионов, но доступного для прохождения более мелких частиц - молекул и ионов воды. Кроме того, фазовый переход мембранных липидов в гель-состояние сопровождается скачкообразным уменьшением коэффициента проницаемости для ионов и молекул воды. Отсюда следует, что в ходе фазового перехода из множества липидных пор отбираются те, радиус которых не превышает 2 нм. И наконец, обращают внимание количественное совпадение коэффициентов проницаемости бислойной мембраны для молекул и ионов воды, а также их одинаковая динамика при фазовом переходе. Естественно предположить, что молекулы и ионы воды пересекают мембрану одним и тем же путем. Этот результат позволяет некоторым ученым вернуться к известной гипотезе о том, что липидный бислой насыщен дефектами типа трансмембранных цепочек молекул структурированной воды. С точки зрения молекулярной организации структура молекул воды в этом случае идентична структуре льда. Молекулы воды связаны между собой водородными связями. Предполагается, что протоны могут передвигаться по системе межмолекулярных водородных связей. Можно думать, что такие льдоподобные цепочки воды возникают в липидном бислое в момент рождения или затекания липидных пор .
Информация о работе Транспорт веществ через биологические мембраны