Синтез белка у прокариот и эукариот

Автор работы: Пользователь скрыл имя, 06 Января 2012 в 11:53, реферат

Описание работы

Исследования в области молекулярной генетики и биохимии показывают, что процессы обмена веществ в клетке находятся под двойным контролем. С одной стороны, это нервная и эндокринная регуляция, обеспечивающая согласование обменных процессов с условиями среды, окружающей клетку, с другой — сложная система генетического контроля за синтезом ферментных белков . С точки зрения мед. генетики и наследственной патологии можно допустить, что мутация гена сопровождается нарушением синтеза фермента независимо от того, на каком участке белковой молекулы возникает дефект. Выявлены следующие варианты нарушений синтеза ферментов: 1) полная блокада (выключение) синтеза фермента; 2) снижение активности фермента; 3) нарушение других систем или биохимических реакций, от которых зависит активность фермента.

Файлы: 1 файл

срс по мб.doc

— 846.50 Кб (Скачать файл)
 

Введение 
 

Особенности возникновения  и течения наследственных болезней стали активно изучаться лишь в 20 в. в связи с успехами в области  генетики — науки о наследственности и ее изменчивости. Для обоснования  мероприятий по профилактике и лечению  наследственных болезней необходимо знать закономерности и механизм передачи наследственных признаков.

Еще в конце 19 —  начале 20 в. стало известно, что передача наследственных свойств связана  со спец. нитевидными структурами  клетки хромосомами — носителями генетической информации. Основным химическим компонентом хромосомы является ДНК — дезоксирибонуклеиновая кислота .Изучение ее строения и свойств позволило понять механизмы и закономерности записи и воспроизведения генетической информации, поэтому ДНК принято рассматривать как материальную основу наследственности в клетке. Изучение хромосом показало, что они оказывают специфическое влияние на развитие и свойства клеток.

Участок хромосомы (молекулы ДНК), определяющий какой-либо признак  или группу признаков организма, принято называть геном. Совокупность всех генов организма называется его генотипом. Совокупность всех признаков организма, проявляющихся на протяжении жизни, называется фенотипом. Место, занимаемое данным геном в хромосоме, называется локусом. Зрелые половые клетки отличаются от соматических (клеток тела) тем, что они содержат половинный набор хромосом — по одной из каждой пары и одну половую хромосому — X или Y. В процессе оплодотворения происходит слияние половых клеток, в результате чего число хромосом в оплодотворенной яйцеклетке удваивается. Этот механизм обеспечивает передачу потомству генетической информации от обоих родителей.

Возникновение Н. б. обусловлено, как правило, наследственно закрепленными  изменениями генетического кода, называемыми мутациями . Мутации могут вызываться как факторами окружающей среды (ионизирующая радиация, некоторые биологически активные химические соединения), так и возникать естественно под влиянием внутренних условий в клетке и в организме в целом.

Исследования в  области молекулярной генетики и биохимии показывают, что процессы обмена веществ в клетке находятся под двойным контролем. С одной стороны, это нервная и эндокринная регуляция, обеспечивающая согласование обменных процессов с условиями среды, окружающей клетку, с другой — сложная система генетического контроля за синтезом ферментных белков . С точки зрения мед. генетики и наследственной патологии можно допустить, что мутация гена сопровождается нарушением синтеза фермента независимо от того, на каком участке белковой молекулы возникает дефект. Выявлены следующие варианты нарушений синтеза ферментов: 1) полная блокада (выключение) синтеза фермента; 2) снижение активности фермента; 3) нарушение других систем или биохимических реакций, от которых зависит   активность   фермента.

Синтез  белка 

Синтез белка (трансляция) является самым сложным из биосинтетических процессов: он требует очень большого количества ферментов и других специфических макромолекул, общее количество которых, видимо, доходит до трёхсот. Часть из них к тому же объединены в сложную трёхмерную структуру рибосом. Но несмотря на большую сложность синтез протекает с чрезвычайно высокой скоростью (десятки аминокислотных остатков в секунду). Процесс может замедляться и даже останавливаться ингибиторами-антибиотиками.

В пятидесятых годах XX века было установлено, что синтез белка происходит в рибонуклеопротеиновых частицах, называющихся рибосомами. Диаметр рибосомы бактерии E. coli составляет 18 нм, а их общее количество – десятки тысяч в клетке. Рибосомы эукариот несколько крупнее (21 нм). Сам процесс протекает в пять этапов.

  1. Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определённой т-РНК, используя энергию АТФ. Реакция катализуется специализированными ферментами, требующими присутствия ионов магния.
  2. Инициация белковой цепи. и-РНК, содержащая информацию о данном белке, связывается с малой частицей рибосомы и с инициирующей аминокислотой, прикреплённой к соответствующей т-РНК. т-РНК комплементарна с находящимся в составе и-РНК триплетом, сигнализирующим о начале белковой цепи.
  3. Элонгация. Полипептидная цепь удлиняется за счёт последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определённое положение при помощи соответствующей т-РНК. В настоящее время генетический код полностью расшифрован, то есть всем аминокислотам поставлены в соответствие триплеты нуклеотидов. Элонгация осуществляется при помощи белков цитозоля (так называемые факторы элонгации).
  4. Терминация. После завершения синтеза цепи, о чём сигнализирует ещё один специальный кодон и-РНК, полипептид высвобождается из рибосомы.
  5. Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определённую пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метильных и других групп и т. п.

Генетический код  обладает рядом особенностей. Во-первых, в коде отсутствуют «знаки препинания», то есть сигналы, показывающие начало и конец кодонов. Во-вторых, 3 нуклеотидных триплета (УАГ, УАА, УГА) не соответствуют никакой аминокислоте, а обозначают конец полипептидной цепи, а кодон АУГ сигнализирует о начале цепи либо (если он в середине последовательности) об аминокислоте метионине. Многие аминокислоты могут кодироваться несколькими различными кодонами. Все кодоны аминокислот одинаковы у всех изученных организмов: от вируса до человека. Создаётся впечатление, что все организмы на Земле происходят от единого генетического предка. Впрочем, в последнее время в митохондриях клеток человека были обнаружены кодоны, не совпадающие с «нормальным» словарём. Их наличие представляет собой загадку для ученых.

Синтез белка требует больших затрат энергии – 24,2 ккал/моль. После окончания синтеза белок при помощи специального полипептидного лидера доставляется к месту своего назначения.

Синтез белка контролируют гены-операторы. Совокупность рабочих генов – операторов и структурных генов – называется оперон. Опероны не являются самостоятельной системой, а «подчиняются» генам-регуляторам, отвечающим за начало или прекращение работы оперона. Свой контроль гены-регуляторы осуществляют при помощи специального вещества, которое они при необходимости синтезируют. Это вещество реагирует с оператором и блокирует его, что влечёт за собой прекращение работы оперона. Если же вещество реагирует с небольшими молекулами – индукторами, это будет являться сигналом к возобновлению работы системы.

Модель оперонов была разработана на микроорганизмах, но она соответствует и принципу работы генома эукариот. У последних  гены образуют сложные системы, называемые супергенами, которые могут одновременно кодировать множество идентичных друг другу молекул белка.

Синтез  белка у прокариот  и эукариот 

Последний этап биосинтеза белка

    Терминация  трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов: UAG, UAA или UGA. Для  стоп-кодонов нет соответствующих  тРНК. Вместо этого к рибосоме присоединяются 2 белковых высвобождающих фактора RF (от англ, releasingfactor) или фактора терминации. Один из них с помощью пептидилтрансферазного центра катализирует гидролитическое отщепление синтезированного пептида от тРНК. Другой за счёт энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы.

    Интересно отметить, что факторы трансляции, реализующие эффекты за счёт гидролиза  ГТФ, являются членами суперсемейства G-белков, в которое входят G-белки, участвующие в трансдукции сигналов гормонов и других биологически активных веществ, и Ras-белки, функционирующие как факторы роста (см. разделы 11, 15). Все G-белки связывают и гидролизуют ГТФ. Когда они связаны с ГТФ, то активны и участвуют в соответствующих метаболических процессах, а когда в активном центре в результате гидролиза ГТФ превращается в ГДФ, эти белки приобретают неактивную конформацию.

    Таким образом, матричная природа процесса трансляции проявляется в том, что  последовательность поступления аминоацил-тРНК в рибосому для синтеза белка строго детерминирована мРНК, т.е. порядок расположения кодонов вдоль цепи мРНК однозначно задаёт структуру синтезируемого белка. Рибосома сканирует цепь мРНК в виде триплетов и последовательно отбирает из окружающей среды "нужные" аа-тРНК, освобождая в ходе элонгации деацилированные тРНК.

    Малая и большая субъединицы рибосомы в процессе трансляции выполняют  разные функции: малая субъединица  присоединяет мРНК и декодирует информацию с помощью тРНК и механизма  транслокации, а большая субъединица ответственна за образование пептидных связей.

Стадия конформации – формирование более сложной структуры белка - вторичной, третичной, четвертичной, после чего белок начинает выполнять свою функцию в живой клетке, например, ферментативную или структурную.

     МЕХАНИЗМЫ ГЕНЕТИЧЕСКОЙ ИЗМЕНЧИВОСТИ. ПОЛИМОРФИЗМ БЕЛКОВ.

    Точная  работа всех матричных биосинтезов - репликации, транскрипции и трансляции - обеспечивает копирование генома и воспроизведение фенотипических характеристик организма в поколениях, т.е. наследственности. Однако биологическая эволюция и естественный отбор возможны только при наличии генетической изменчивости. Установлено, что геном постоянно претерпевает разнообразные изменения. Несмотря на эффективность механизмов коррекции и репарации ДНК, часть повреждений или ошибок в ДНК остаётся. Изменения в последовательности пуриновых или пиримидиновых оснований в гене, не исправленные ферментами репарации, получили название "мутации". Одни из них остаются в соматических клетках, в которых они возникли, а другие обнаруживаются в половых клетках, передаются по наследству и могут проявляться в фенотипе потомства как наследственная болезнь.

    Существенный  вклад в генетическую изменчивость вносят перестройки хромосом в процессе мейоза. Как уже указывалось ранее, слияние яйцеклетки со сперматозоидом у эукариотов сопровождается генетическими рекомбинациями, в ходе которых происходит обмен участками ДНК между гомологичными хромосомами. Это приводит к появлению потомства с новой комбинацией генов.

    Изменения в геноме могут быть разнообразны и затрагивать различные по протяжённости участки ДНК от хромосом и генов до отдельных нуклеотидов

    Наиболее  драматичны геномные и хромосомные  мутации, часто наблюдаемые на уровне соматических клеток. Если они имеют  место в половых клетках, то для организма это имеет чаще всего летальные последствия. Частота мутаций в половых клетках высока. Существуют данные, указывающие на то, что в 20% случаев при беременности у эмбрионов наблюдают нарушения структуры хромосом. В 90% случаев это приводит к ненормальному развитию плода и элиминированию зародышей в результате спонтанных абортов. Выкидыши, происходящие в течение первых нескольких недель беременности, связаны с серьёзными нарушениями хромосом. В 50% случаев отмечается трисомия по аутосомам, т.е. вместо.

    В ряде случаев мутантный белок, несмотря на входящую в него изменённую аминокислоту, сохраняет способность выполнять свою функцию, но может быть Не столь эффективным, как белок "дикого" типа. В результате мутации у фермента может оказаться более высоким значение Кm или более низким значение Vmax, а иногда то и другое одновременно. Такие частично функционирующие белки называют мутантными белками с неполностью подавленной функцией.

    Изредка в результате мутации белковый продукт  гена оказывается лучше приспособленным к выполнению своей функции. Такие мутации дают потомству преимущества в борьбе за существование, а серия соответствующих мутаций может привести к появлению нового вида.

    Наибольшим  повреждающим действием обладают мутации, приводящие к образованию одного из терминирующих кодонов (нонсенс-мутация). В процессе синтеза белка работа рибосомы будет остановлена на мутантном триплете мРНК: UAA, UAG или UGA. Проявление нонсенс-мутаций зависит от их внутригенной локализации. Чем ближе мутация к 5'-концу гена, т.е. к началу транскрипции, тем короче её белковый продукт, а следовательно, тем меньше он способен к осуществлению биологической функции.

  Триплет 
"дикого" типа
Изменённый 
триплет
Матрица ДНК  3'-GTC-5' 3'-АТС-5'
Кодон мРНК 5'-CAG-3' 5'-UAG-3'
Аминокислота -Глн- Стоп-кодон

    для гена гемоглобина скорость замещения  одного основания другим лежит в  интервале μ = 2,5×10-9-5×10-9 замен в гамете за одно поколение. Чтобы представить себе, что означают эти цифры, распространим эту скорость мутаций на весь геном человека - 3×109 пар оснований. Умножив размер генома на скорость μ, мы получим, что геном за одно поколение может получить от 7 до 15 мутаций, т.е. это значит, что каждая гамета содержит такое количество изменений в ДНК по сравнению с родительской ДНК. А поскольку у каждого шадивидуума клетки диплоидны и получаются при слиянии 2 гамет, то мутаций тоже в 2 раза больше.

    Спрашивается, каким же образом человечество справляется  с такой мутационной нагрузкой? Отвечая на этот вопрос, следует помнить, что кодирующие части генов, изменения в которых наиболее опасны, занимают не более 10% генома. Ситуация облегчается ещё и тем, что далеко не каждая мутация в кодирующей области имеет фенотипическое проявление. Многие попадают в 3'-положение кодонов и, таким образом, являются "молчащими", так как благодаря вырожденности генетического кода они не приводят к аминокислотным заменам, другие оказываются в доменах, несущественных для функционирования белков. Потомству передаются мутации, происходящие в гаметах, а их процент совсем невелик.

Информация о работе Синтез белка у прокариот и эукариот