Генномодифицированные продукты

Автор работы: Пользователь скрыл имя, 12 Февраля 2011 в 14:39, реферат

Описание работы

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система.

Файлы: 1 файл

Документ Microsoft Office Word.doc

— 89.50 Кб (Скачать файл)

     Введение

     Генная  инженерия это новая, революционная  технология, при помощи которой ученые могут извлекать гены из одного организма  и внедрять их в любой другой. Гены это программа жизни - это  биологические конструкции, из которых  состоит ДНK и которые обуславливают специфические характеристики, присущие тому или другому живому организму. Пересадка генов изменяет программу организма - получателя и его клетки начинают производить различные вещества, которые, в свою очередь, создают новые характеристики внутри этого организма. При помощи этого метода исследователи могут менять особые свойства и характеристики в нужном им направлении, например: они могут вывести сорт томатов с более длительным сроком хранения или сорт соевых бобов, устойчивых к воздействию гербицидов.

     Генная  инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип  является не просто механическая сумма  генов, а сложная, сложившаяся в  процессе эволюции организмов система.

     Генная  инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим. Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул.

     Ген - участок молекулы ДНК, в котором  находится информация о первичной  структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени. Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов, прежде всего, связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка.

     Сущность  методов генной инженерии заключается  в том, что в генотип организма  встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

     В данном реферате рассматриваются основные характеристики, проблемы и перспективы такой новейшей технологии, как генная инженерия. В настоящее время эта тема весьма актуальна. На начало 21-го века в мире проживает около 5 млрд. человек. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 5 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство наиболее производительные биотехнологии. Одной из таких технологий как раз и является генная инженерия.

     Для написания реферата производился сбор материала, его обобщение и систематизация, что было весьма затруднительно, потому что в источниках существует много  разногласий, много точек зрения.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  1. Историческая  перспектива генной инженерии

   Как известно жизнь зародилась на Земле  приблизительно 4,6 миллиарда лет  назад, и, какие бы формы она не принимала, за жизненные проявления каждого организма отвечало одно и то же вещество - дезоксирибонуклеиновая кислота (она же - ДНК).

     ДНК, закрепленная в генах,  определяла, и все еще определяет (а в будущем, видимо, под чутким  руководством человека) метаболическую  активность клеток, необходимую  для их выживания, а это и  есть жизнь в самом простом  определении. Собственно, термин "гены" не использовался до начала прошлого века, хотя исследования того, как они функционируют начались еще в ХIX веке.

   Австрийский монах Грегор Мендель в течение  многих лет наблюдал за потомством растений гороха, который он выращивал  на монастырском огороде. Фиксируя внешние особенности - высоту стебля, окраску лепестков, форму горошин, он смог теоретически предположить существование неких "факторов", которые наследуются потомством от родительских растений. Как и Колумб, Мендель умер, так и не узнав о том, что же ему удалось открыть. С самого начала ХХ века разразился бум, связанный с исследованиями строения клеток. Биологам удалось установить, какие функции выполняет клеточное ядро, раскрыть загадку природы хромосом. Самым важным оказалось то, что стала понятной природа трансляция молекул ДНК: во время меозиса, предшествующего появлению яйцеклеток и сперматозоидов, количество хромосом, в которых и содержится ДНК, уменьшается в два раза, что впоследствии, при слиянии половых клеток, позволит объединить их ядра в единое целое - дать начало новому организму с совершенно уникальным набором генов.

   В 1953 году, наконец, удалось вычленить  двойную спиральную структуру ДНК, которую сейчас в лицо знает каждый школьник. Теперь ДНК признана универсальным биологическим языком, который объединят все обитающие на Земле организмы: человека и бактерии, грибы и растения.

   В семидесятых годах ученые научились  вырезать участки ДНК одного организма  и пересаживать его в другой, что  совершило небольшой переворот  в производстве разнообразных лекарств - инсулина, гормона человеческого роста и т.д. Не один год ведутся попытки осуществить так называемую терапию человеческими генами - людям, у которых в генном наборе не хватает определенных компонентов или они в какой-то мере неполноценны, пересаживаются гены других людей. Достаточно обширно знания, полученные благодаря генетике, используются в сфере воспроизводства людей. Многие знают, что при определенных условиях вполне реально выращивать детей "из пробирки", а при некоторых ситуациях женского бесплодия - обращаться за помощью к суррогатным матерям. Генетически измененные растения (морозоустойчивые злаки, трансгенный картофель, быстросозревающие помидоры и т.д.) уже появляются на обеденных столах, хотя пока особого ажиотажа не вызывают.

   Вывод: ХХ век - это век не только фундаментальных открытий, но и век инженерии - практического применения этих самых открытий. Поэтому наряду с продолжающимися исследованиями про то, как "все это в целом устроено", семимильными шагами развивались различные отрасли генной инженерии и разнообразные биотехнологии. С самого начала инженерная мысль такого рода касалась в первую очередь того, каким образом можно использовать одни живые организмы, обладающие определенным геном, для того, чтобы улучшить другие - речь шла о растениях или животных.  
 
 

   
  1. Возможности генной инженерии

      Успешные манипуляции с генами растений и животных не могли не привести к достаточно скользкому вопросу: а что же человек?

        Если возможно улучшать животных, то почему бы не заняться человеком. Однако для начала необходимо все-таки разобраться с генным набором человека. Так, в 1990 году появилась инициатива по картированию человеческих хромосом, состоящих из 26-30 тысяч генов. Проект получил простое название "Геном человека" и ориентировочно должен был представить полную карту генома где-то к 2005 году. В проект входят исследовательские группы из разных стран, а с конца 90-х гг. создаются специальные компании, основной задачей которых является облегчение и ускорение коммуникации между такими группами.

        К началу 2001 года уже полностью  картированы 2 хромосомы: 21 и 22. Однако  основной сенсацией стало открытие, сделанное группой Крега Вентера, общей карты генома человека. Ученые говорят, что если сравнивать эту карту с обычными, то вряд ли бы по ней можно было бы попасть в магазин на соседней улице, однако в любом случае сам факт ее существования говорит о начале эпохи патентирования генов, а это, в свою очередь, поднимает множество вопросов уже не биологического толка, а этического и правового. Хотя ученые и заявляют, что основная цель картирования генома - это необходимость разобраться в том, как работает человеческое тело, чтобы эффективнее противостоять разнообразным заболеваниям, а еще такие знания могут значительно облегчить создание новых медицинский препаратов, все же становится очевидным необходимость как правового регулирования вопроса: как и что можно делать с человеческим телом, так и ответа на вопрос: где надо остановиться? Может ли человек уподобиться Творцу и сам заняться созданием новых существ? Формирование карты генома человека часто сравнивают с такими революционными событиями, как высадка человека на Луну, например. Однако сейчас наблюдается одно существенное различие: если космические программы - это одна из задач государства, то группы - участники проекта, как правило, имеют частное финансирование, следовательно, авторские права на их разработки будут иметь негосударственные компании. А что они будут с ними делать? Представим себе, что в недалеком будущем, карта будет составлена достаточно точно, и каждый человек может быть, таким образом, описан. Возникает вопрос - кто будет владеть доступом к этой информации? В какой мере человек сможет сохранять в неприкосновенности самую "интимную" информацию о себе? Не будут ли работодатели отказывать в приеме на работу человеку, у которого в генах заложена предрасположенность к какому-либо виду рака? Возможно ли будет медицинское страхование в ситуации, когда геном каждого отдельного человека будет представлять информацию о всех потенциальных болезнях? Тони Блэр заявил о необходимости составления генетических портретов преступников. И вроде бы ученые готовы работать над тем, чтобы открыть специальные гены, отвечающие за девиантное поведение людей. Однако многих специалистов уже сейчас пугает перспектива того, что в недалеком будущем общество переложит решение разнообразных проблем - преступности, бедности, расизма и т.д. - на генетиков и генную инженерию.

      Наиболее  распространенным методом генной инженерии  является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

      1. Рестрикция - разрезание ДНК, например, человека на фрагменты.

      2. Лигирование - фрагмент с нужным  геном включают в плазмиды  и сшивают их.

      3. Трансформация - введение рекомбинантных  плазмид в бактериальные клетки.

      Трансформированные  бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.

      4. Скрининг - отбор среди клонов  трансформированных бактерий тех,  которые плазмиды, несущие нужный  ген человека.

        Весь этот процесс называется  клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней. Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери.

      Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции. Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию.

Информация о работе Генномодифицированные продукты