Автор работы: Пользователь скрыл имя, 12 Мая 2010 в 01:31, Не определен
Введение 3
Биотехнологические производства с использованием ферментов микроорганизмов 5
1. Получение глюкозо-фруктозных сиропов 5
2. Получение L-аминокислот 7
3. Получение L-аспарагиновой кислоты 9
4. Получение L-яблочной кислоты 9
5. Получение безлактозного молока 10
6. Получение сахаров из молочной сыворотки 11
7. Получение 6-аминопенициллановой кислоты 12
ФЕРМЕНТАТИВНОЕ ПРЕВРАЩЕНИЕ ЦЕЛЛЮЛОЗЫ В САХАРА 13
Целлюлолитические микроорганизмы и ферменты 13
Выводы 15
Список литературы 16
ФЕДЕРАЛЬНОЕ
ГОСУДАРСТВЕННОЕ
высшего профессионального образования
«ИЖЕВСКАЯ
ГОСУДАРСТВЕННАЯ
Зооинженерный
факультет
РЕФЕРАТ
На тему: Ферменты
микроорганизмов
Выполнил:
Студент 243 группы
Ушков В.В.
Проверил: преподаватель
Шахова
Е.В.
Ижевск, 2010 г.
Истоки современной биотехнологии уходят глубоко в прошлое. С незапамятных времен получали пищевые продукты и улучшали их качество с использованием биологических процессов и агентов. В качестве биологических агентов применялись различные организмы (от животных до микроорганизмов) На этом принципе основаны общеизвестные древнейшие способы получения молока, изготовления вин, уксуса, пивоварения, сыроделия, хлебопечения и т. д.
Хотя история пищевых технологий насчитывает тысячелетия, тем не менее совершенствование их постоянно продолжается. В последнее время наметились перспективы принципиального сдвига в технологии получения и улучшения качества пищевых продуктов. Это связано с переходом от использования целых биологических организмов на клеточный и молекулярный уровни. Появилась возможность конструировать биологические агенты, изменять структуру молекул, «резать» их на части и соединять по усмотрению исследователя-биотехнолога, извлекать биокатализаторы из естественного клеточного окружения и присоединять с помощью ковалентных или других связей к специальным носителям (тем самым опять-таки изменять структуру молекул) и т.д. В этом и заключается главное и принципиальное отличие традиционных пищевых технологий и их традиционного научного фундамента от современной биотехнологии. Следует, впрочем, иметь в виду, что четкую грань между технической биохимией и биотехнологией провести достаточно трудно.
Может возникнуть вопрос, почему в разделе, посвященном промышленным процессам инженерной энзимологии, речь идет в основном о получении пищевых продуктов. Дело в том, что иммобилизованные ферменты и клетки в основном используют в получении пищевых продуктов и в меньшей степени фармацевтических препаратов. Такое ограничение вызвано весьма малой доступностью (в широких масштабах) ферментов, способных катализировать реакции технологической значимости, например, в органической или неорганической химии, нефтехимии, полимерной химии, фармацевтической промышленности и т. д. Напротив, традиционное использование растворимых ферментов в пищевой промышленности создало определенный фундамент для дальнейшего совершенствования методов в этой области.
К настоящему времени семь процессов с использованием иммобилизованных ферментов или клеток нашли крупномасштабное промышленное применение в ряде развитых стран мира:
1.
Производство глюкозо-
2. Получение оптически активных L-аминокислот из их рацемических смесей.
3. Синтез L-аспарагиновой кислоты из фумаровой кислоты.
4. Синтез L-яблочной кислоты из фумаровой кислоты.
5.
Производство диетического
6. Получение Сахаров из молочной сыворотки.
7. Получение 6-аминопенициллановой кислоты (пенициллинового ядра) из обычного пенициллина (пенициллина G) для последующего производства полусинтетических антибиотиков пенициллинового яда.
Фруктоза,
или иначе фруктовый, плодовый или
медовый сахар, широко распространена
в природе. Особенно богаты
ей
яблоки и помидоры, а также пчелиный мед,
который почти наполовину состоит из фруктозы.
По сравнению с обычным пищевым сахаром
(в состав которого фруктоза также входит,
но в виде химического соединения с менее
сладкой глюкозой) фруктоза обладает
более приятным вкусом, и согласно
профессиональной терминологии вкус
фруктозы «медовый», а обычного
сахара — «приторный». Она на 60—70% слаще
сахара и потреблять ее можно меньше, а
значит, меньше будет и калорийность продукта.
Это важно с точки зрения диетологии питания.
Фруктозу в отличие от глюкозы и пищевого
сахара могут потреблять больные диабетом,
так как замена сахара фруктозой существенно
снижает вероятность возникновения диабета.
Это объясняется тем, что усвоение
фруктозы не связано с превращением
инсулина. Кроме того, она в меньшей степени
вызывает заболевание зубов , чем сахар.В
смеси с глюкозой фруктоза не кристаллизуется
(не засахаривается), поэтому нашла широкое
применение в производстве мороженого,
кондитерских изделий и т. д. Несмотря
на неоспоримые преимущества фруктозы
по сравнению с обычным сахаром, вплоть
до начала 70-х годов она не производилась
промышленным путем. В 1973 г. американской
компанией «Клинтон Корн» был внедрен
в промышленность процесс превращения
глюкозы во фруктозу под действием иммобилизованного
фермента глюкозоизомеразы, этот процесс
стал самым крупным в мире по сравнению
с другими, в которых используются иммобилизованные
ферменты.
Основы процесса.
Фермент глюкозоизомераза катализирует превращение глюкозы, получаемой при гидролизе крахмала (кукурузного или реже картофельного), в смесь глюкозы и фруктозы. Образующийся глюкозо-фруктозный сироп содержит 42—43% фруктозы, около 51% глюкозы и не более 6% ди- или олигосахаридов, по сладости соответствует обычному сахару или инвертному сахару, получаемому кислотным (или ферментативным) гидролизом сахарозы.
Для некоторых пищевых производств (например, безалкогольных напитков типа кока-колы) употребляют глюкозо-фруктозные сиропы с содержанием фруктозы 55 и 90%. Их в свою очередь изготавливают из обычных (42%-ных по фруктозе) сиропов с использованием разделительных процессов типа жидкостной хроматографии.
Глюкозо-фруктозная смесь поступает на рынок в виде сиропов. Применяется при производстве тонизирующих и ацидофильных напитков, мороженого, кондитерских изделий, хлеба, консервированных фруктов и т. д.
Технологические варианты процессов.
В литературе содержится немного данных о технологических деталях процессов. Несмотря на то, что почти в каждом процессе применяются ферменты или клетки различного происхождения, имеющие неодинаковую каталитическую активность и полученные различными методами иммобилизации, все процессы имеют общие черты.
Аминокислоты — главный строительный материал организма, из которого формируются пептиды и белки. Растения и микроорганизмы способны сами синтезировать все нужные им аминокислоты из более простых химических соединений. Однако человеческий организм способен синтезировать лишь 12 из 20 аминокислот, необходимых ему для жизнедеятельности. Остальные 8 аминокислот получили название незаменимых и должны поступать в организм извне — с пищей. При нехватке хотя бы одной из незаменимых аминокислот замедляется рост организма, проявляется патология. Поэтому важно синтезировать эти аминокислоты в промышленных масштабах для корректировки рационов питания, в лечебных и профилактических целях и т. д. Кроме того, аминокислоты (как заменимые, так и незаменимые) являются важнейшим сырьем для обеспечения многих биотехнологических процессов.
Производство многих аминокислот, в том числе и незаменимых, —крупнотоннажная отрасль химической промышленности. Однако с помощью химических методов получается смесь оптических изомеров аминокислот, иначе говоря, смесь L- и D- аминокислот, молекулы которых в L- и D-форме представляют собой зеркальные изомеры. В химических реакциях эти изомеры практически неразличимы, однако человеческий организм усваивает лишь L-аминокислоты (за исключением метионина). Для большинства биотехнологических процессов D- аминокислоты также не представляют ценности.
Разделение смеси L- и D- аминокислот, так называемой рацемической смеси, на составляющие их изомеры стало первым процессом в мире, осуществленным с помощью иммобилизованных ферментов на промышленном уровне. Этот процесс был реализован в Японии на предприятии, принадлежащем компании «Танабе Сейяку» в 1969 г. В течение 15 предшествующих лет данный процесс проводился с применением растворимого фермента аминоацилазы, но он был недостаточно экономичен. После перехода на иммобилизованную аминоацилазу экономическая эффективность процесса возросла в полтора раза, и в настоящее время компания осуществляет на промышленном уровне производство пяти L-аминокислот, из них четыре незаменимые (метионин, валин, фенилаланин, триптофан).
В качестве исходного вещества используются ацилированные D, L-аминокислоты, полученные с помощью обычного химического синтеза. Фермент аминоацилаза гидролизует один ацил-L-изомер, отщепляя от него объемную ацильную группу, и тем самым резко увеличивая растворимость образующейся L-аминокислоты по сравнению с присутствующим в реакционной системе ацил-Д-изомером. После этого вещества легко отделяются друг от друга путем известных физико-химических методов. Так выделяется чистая L-аминокислота.
Остающаяся ацил-О-аминокислота при нагревании рацеми-зуется, т. е. переходит опять в смесь ацилированных D, L-аминокислот, и процесс повторяют сначала. Таким образом, в итоге единственным продуктом является L-аминокислота. Оказалось, что для аминоацилазы не имеет значения, какую аминокислоту ей гидролизовать, важно лишь строение ацильной части, к которой фермент имеет строгую специфичность. В результате этого одна и та же реакционная колонна с иммобилизованной амино-ацилазой может быть применена в производстве самых различных L-аминокислот.
Иммобилизованный
фермент легко готовить, так как
он легко адсорбируется на специальной
смоле, которую затем помещают в реакционную
колонну. Время полуинактивации иммобилизованного
фермента в промышленных условиях составляет
65 сут. Когда активность катализатора
падает ниже нормы, в колонну добавляют
раствор свежего фермента (раз в несколько
месяцев), который опять адсорбируется
на носителе. Устойчивость полимерного
носителя высокая; так, на предприятии
японской компании «Танабе Сейяку» он
используется более 8 лет в одной и той
же колонне без замены (I. Chibata, 1978).
Аспарагиновая кислота не принадлежит к числу незаменимых, но производится в мире многими тысячами тонн. Она находит широкое применение в пищевой промышленности для придания (в сочетании с другой аминокислотой — глицином) кондитерским изделиям и напиткам различных оттенков кислого или сладкого вкуса. Аспарагиновую кислоту можно получать с помощью фермента аспартазы. В качестве исходных веществ для ферментативного синтеза используются фумаровая кислота и аммиак — крупнотоннажные продукты органического и неорганического синтеза. Протекающая реакция одностадийна — в присутствии фермента молекула аммиака присоединяется к фумаровой кислоте по месту двойной связи с образованием оптически активной L-аспарагиновой кислоты. В этом процессе впервые в технологической практике были применены иммобилизованные клетки микроорганизма, содержащие фермент в его естественной микробной оболочке. Этот процесс был разработан японской фирмой «Танабе Сейяку» в 1973 г.
Плотный гель с иммобилизованными в нем микробными клетками, содержащими аспартазу, формуют в кубики размерами 2—3 мм, набивают ими колонну объемом 1 м3 и пропускают через нее раствор фумарата аммония. На выходе из колонны L-аспарагиновую кислоту кристаллизуют, центрифугируют и промывают холодной водой. Процесс практически полностью автоматизирован и осуществляется в непрерывном режиме. Масштабы производства на фирме «Танабе Сейяку»—1700 кг чистой L-аспарагиновой кислоты в сутки на реактор объемом 1 м3 .
Яблочная
кислота находит спрос в
L-яблочную кислоту получают ферментативным путем, так же как и L-аспарагиновую кислоту, из фумаровой кислоты. Здесь в качестве катализатора используют иммобилизованные в гель клетки, содержащие фермент фумаразу. В присутствии этого фермента происходит присоединение воды по двойной связи молекулы фумаровой кислоты. В остальном реакция протекает так, как и в случае L-аспарагиновой кислоты. В обычных (интактных) клетках время полуинактивации фумаразы составляет 6 сут, в иммобилизованных в полиакриламидный гель — 55 сут, а в иммобилизованных в гель на основе каррагинана — полисахарида из морских водорослей—160 сут
Лактоза, или молочный сахар, содержится в достаточно больших количествах в молоке и молочной сыворотке. Этот сахар характеризуется малой сладостью и низкой растворимостью, в его присутствии происходит кристаллизация мороженого и других молочных изделий и продуктов, что является причиной неприятных вкусовых ощущений.
Молекулы лактозы распадаются на глюкозу и галактозу при гидролизе под действием лактазы, или β-галактозидазы. Молоко после такой обработки приобретает новые диетические качества, поскольку определенная часть населения не может употреблять молоко из-за наличия в нем лактозы. Это свойство организма получило название лактазной недостаточности.
Первый промышленный процесс получения безлактозного молока с использованием иммобилизованной лактазы был осуществлен итальянской фирмой «Сентрале дель Латте» в Милане. Получаемое диетическое молоко несколько слаще по сравнению с обычным, поскольку глюкоза более сладкая, чем лактоза, однако это не мешает его употреблению. Стабильность иммобилизованного фермента достаточно высока, и после 50 сут работы он сохраняет 80% первоначальной активности.