Ферменты как объект пищевой биотехнологии

Автор работы: Пользователь скрыл имя, 30 Марта 2015 в 17:58, курсовая работа

Описание работы

Понятие «фермент», характеристика биохимического класса «ферменты».
Ферменты (от лат. fermentum — брожение, закваска), специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Через их посредство реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии в живых организмах. Ферменты бывают простыми или сложными белками, в состав которых наряду с белковым компонентом (апоферментом) входит небелковая часть — кофермент.

Файлы: 1 файл

курсовая биотехнология пищи.docx

— 135.35 Кб (Скачать файл)

Дефектные и чужеродные белки деградируют в клетке при участии АТФ-зависимой системы протеолиза. У эукариот (все организмы, кроме бактерий и синезеленых водорослей) эта система включает низкомол. белок убикитин, образующий с белками-субстратами конъюгат, и протеазы, расщепляющие этот конъюгат.

Протеолитические ферменты играют важную роль во мн. процессах, происходящих в организме, напр. при оплодотворении, биосинтезе белка, свертывании крови и фибринолизе, иммунном ответе (активации системы комплемента), гормональной регуляции. Во мн. этих случаях ферментрасщепляет в субстрате лишь одну или неск. связей (ограниченный протеолиз). Активность протеолитических ферментов регулируется на посттрансляц. стадии путем активации их неактивных предшественников, а также действием прир. ингибиторов ферментов. Нарушения механизмов регуляции активности протеолитических ферментов причина множества тяжелых заболеваний (мышечной дистрофии, аутоиммунных заболеваний, эмфиземы легких, панкреатитов и др.).

Протеолитические ферменты применяют в медицине, напр. для коррекции нарушений пищеварения, заживления ран и ожогов и др. Их также используют для получения смесей аминокислот, применяемых для парэнтерального питания, в производстве гормональных препаратов и некоторых антибиотиков, в пищевой и кожевенной промышленности, производстве моющих средств.

5. Энергия и кинетика ферментативных реакций.

Кинетика ферментативных реакций, изучает закономерности протекания во времени ферментативных реакций, а также их механизм; раздел кинетики химической.

Каталитического цикл конверсии в-ва S (субстрата) в продукт P под действием фермента E протекает с образованием промежуточного соединения Xi:

где ki - константы скорости отдельных элементарных стадий, KS - константа равновесия образования фермент-субстратного комплекса X1 (ES, комплекс Михаэлиса).

При данной т-ре скорость реакции зависит от концентраций фермента, субстрата и состава среды. Различают стационарную, предстационарную и релаксационную кинетику ферментативных реакций.

Стационарная кинетика. В стационарном состоянии по промежуточным соед. (dXi/dt = 0, i = 1, ..., n) и при избытке субстрата   , где [S]0 и [E]0 - начальные концентрации соотв. субстрата и фермента, кинетика процесса характеризуется постоянным, неизменным во времени уровнем концентраций промежуточных соединений, а выражение для скорости процесса v0, наз. начальной стационарной скоростью, имеет вид (ур-ние Михаэлиса- Ментен):

 (1)

где значения kкат и Км - функции констант скорости элементарных стадий и заданы уравнениями:

Величину kкат наз. эффективной каталитической  константой скорости процесса, параметр Км - константой Михаэлиса. Значение kкат определяется величинами ki наиб. медленных стадий каталитической реакций и иногда наз. числом оборотов фермента (ферментной системы); kкат характеризует число каталитических циклов, совершаемых ферментной системой в единицу времени. Наиб. распространены ферменты, имеющие значение kкат. для специфических субстратов в диапазоне 102-103 с-1. Типичные значения константы Михаэлиса лежат в интервале 10-3- 10-4 M.

При больших концентрациях субстрата, когда    т. е. скорость реакции не зависит от концентрации субстрата и достигает постоянной величины, наз. макс. скоростью. Графически уравнение Михаэлиса - Ментен представляет собой гиперболу. Его можно линеаризовать, используя метод двойных обратных величин (метод Лайнуи-вера - Берка), т. е. строя зависимость 1/v от 1/[S]0, или др. методы. Линейная форма уравнения (1) имеет вид:

 (2)

Она позволяет определить графически значения Км и vмакс (рис. 1).

Рис. 1. График линейной трансформации уравнения Михаэлиса - Ментен в двойных обратных величинах (по Лайнуиверу - Берку).

Величина Км численно равна концентрации субстрата, при к-рой скорость реакции равна  , поэтому Км часто служит мерой сродства субстрата и фермента, однако это справедливо лишь, если

Величины Км и vm изменяются в зависимости от значений рН. Это связано со способностью участвующих в катализе групп молекулы фермента изменять свое состояние ионизации и, тем самым, свою каталитическую эффективность. В простейшем случае изменение рН приводит к протонированию или депротонированию, по крайней мере, двух ионизирующихся групп фермента, участвующих в катализе. Если при этом только одна форма фермент-субстратного комплекса (напр., ESH) из трех возможных (ES, ESH и ESH2) способна превращаться в продукт р-ции, то зависимость скорости от рН описывается формулой:

где f = 1 + [H+]/Kа + Kb /[H+] и f ' = 1 + [H+]/К'а + K'b/[H+] -т. наз. рН-ф-ции Михаэлиса, а Ка, Кb и К'a, K'b- константы ионизации групп а и b соответствии свободного фермента и фермент-субстратного комплекса. В координатах lg kкат - рН эта зависимость представлена на рис. 2, причем тангенсы углов наклона касательных к восходящей, независимой от рН, и нисходящей ветвям кривой должны быть равны соответственно +1, 0 и -1. Из такого графика можно определить значения рКа групп, участвующих в катализе.

Рис. 2. Зависимость каталитической. константы от рН в логарифмических координатах.

Скорость ферментативной р-ции не всегда подчиняется ур-нию (1). Один из часто встречающихся случаев - участие в р-ции аллостерич. ферментов(см. Регуляторы ферментов), для к-рых зависимость степени насыщения фермента от [S]0 имеет негиперболич. характер (рис. 3). Это явление обусловлено кооперативностью связывания субстрата, т.е. когда связывание субстрата на одном из участков макромолекулы фермента увеличивает  или уменьшает сродство к субстрату др. участка.

Рис. З Зависимость степени насыщения фермента субстратом от концентрации субстрата при положительной (I) и отрицательной (II) кооперативности, а также в ее отсутствии (III).

Предстационарная кинетика. При быстром смешении р-ров фермента и субстрата в интервале времен 10-6-10-1 с можно наблюдать переходные процессы, предшествующие образованию устойчивого стационарного состояния. В этом предстационарном режиме при использовании большого избытка субстрата   система дифференц. уравнений, описывающая кинетику процессов, линейна. Решение данного типа системы линейных дифференцируемых уравнений дается суммой экспоненциальных членов. Так, для кинетической схемы, представленной выше, кинетика накопления продукта имеет вид:

где Ai-, b, аn - функции элементарных констант скорости;  -корни соответствующего характеристич. ур-ния.

Величина, обратная  , называется характеристич. временем процесса:

Для реакции, протекающей с участием n промежуточном соединении, можно получить n характеристич. времен.

Исследование кинетики ферментативной реакции в предстационарном режиме позволяет получить представление о детальном механизме каталитического цикла и определить константы скорости элементарных стадий процесса.

Экспериментально кинетику ферментативной реакции в предстационарном режиме исследуют с помощью метода остановленной струи, позволяющего смешивать компоненты реакции в течение 1 мс.

Релаксационная кинетика. При быстром возмущающем воздействии на систему время, к-рое необходимо системе для достижения нового равновесия или стационарного состояния, зависит от скорости процессов, определяющих каталитический ферментативный цикл.

Система уравнений, описывающая кинетику процесса, линейна, если смещение от положения равновесия невелико. Решение системы приводит к зависимостям концентраций компонентов различают стадий процесса в виде суммы экспоненциальных членов, показатели экспонент которых имеют характер времен релаксаций. Результатом исследования является спектр времен релаксации, соответствующий числу промежуточных  соединений, участвующих в процессе. Величины времен релаксаций зависят от констант скорости элементарных стадий процессов.

Релаксационные методы кинетики позволяют определить константы скорости отдельных элементарных стадий трансформации интермедиатов. Методы изучения релаксационной кинетики имеют различают разрешающую способность: поглощение ультразвука - 10-6-10-10 с, температурный скачок - 1O-4-10-6 с, метод электрического импульса - 10-4-10-6 с, скачок давления - 10-2 с. При исследовании кинетики ферментативных р-ций наиб, применение нашел метод температурного скачка.

Макрокинетика ферментативных процессов. Развитие методов получения гетерогенных катализаторов путем иммобилизации ферментов на различных носителях обусловило необходимость анализа кинетики процессов с учетом массопереноса субстрата. Теоретически и экспериментально исследованы закономерности кинетики реакций с учетом эффектов диффузионного слоя и для систем с внутридиффузионными затруднениями при распределении фермента внутри носителя.

В условиях, когда на кинетику процесса влияет диффузионный перенос субстрата, каталитическая эффективность системы уменьшается. Фактор эффективности   равен отношению плотности потока продукта в условиях протекания ферментативной реакции с диффузионно пониженной концентрацией субстрата к потоку, который мог бы реализоваться в отсутствие диффузионных ограничений. В чисто диффузионной области, когда скорость процесса определяется массопереносом субстрата, фактор эффективности для систем с внешнедиффузионным торможением обратно пропорционален диффузионному модулю  :

где ld - толщина диффузионного слоя, D - коэф. диффузии субстрата.

Для систем с внутридиффузионным торможением в реакциях первого порядка

где Фт - безразмерный модуль (модуль Тиле).

При анализе кинетических закономерностей в ферментативных реакторах широкое теоретическое и экспериментальное развитие получили "идеальные" модели реакторов, проточный безградиентный реактор (проточный реактор идеального перемешивания), проточный реактор с идеальным вытеснением, мембранный реактор.

Кинетика полиферментных процессов. В организме (клетке) ферменты действуют не изолированно, а катализируют цепи трансформации молекул. Реакции в полиферментных системах с кинетической точки зрения можно рассматривать как последовательные процессы, специфической особенностью которых является катализ ферментами каждой из стадий:

где vi, Ki - соотв. макс, скорость процесса и константа Михаэлиса i-й стадии реакции соответственно.

Важная особенность процесса - возможность образования устойчивого стационарного состояния. Условием-его возникновения может служить неравенство vi > v0, где v0 - скорость лимитирующей стадии, характеризуемой наименьшей константой скорости и тем самым определяющей скорость всего последовательного процесса. В стационарном состоянии концентрации метаболитов после лимитирующей стадии меньше константы Михаэлиса соответствующего фермента.

Специфическую группу полиферментных систем составляют системы, осуществляющие окислительно-восстановительные реакции с участием белковых переносчиков электронов. Переносчики образуют специфические структуры, комплексы с детерминированной последовательностью переноса электрона. Кинетическое описание такого рода систем рассматривает в качестве независимой переменной состояния цепей с различной степенью заселенности электронами.

Применение. Ферментативных реакций кинетику широко используют в исследовательской практике для изучения механизмов действия ферментов и ферментных систем. Практически значимая область науки о ферментах - инженерная энзимология, оперирует понятиями ферментативных реакций кинетики для оптимизации биотехнологических процессов.

 


Информация о работе Ферменты как объект пищевой биотехнологии