Биология как наука

Автор работы: Пользователь скрыл имя, 27 Марта 2010 в 17:56, Не определен

Описание работы

Контрольная работа

Файлы: 1 файл

Биология как наука ГОТОВАЯ.doc

— 278.50 Кб (Скачать файл)

    Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты отсутствуют. Вместо клеточного ядра имеется его эквивалент (нуклеоид), лишенный оболочки и состоящий из одной-единственной молекулы ДНК.

      Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.

    В прокариотических клетках, способных  к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии) имеются различно структурированные  крупные впячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или – в бесцветных клетках – более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии.

    Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна.

    Только  некоторые органеллы прокариотической клетки гомологичны соответствующим  органеллам эукариот. Для прокариот  характерно наличие муреинового  мешка – механически прочного элемента клеточной стенки. 

    

    Значение  бактерий 

    Бактерии  являются самыми древними организмами, появившимися около 3,5 млрд. лет назад  в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

    После появления многоклеточных организмов между ними и бактериями образовались многочисленные связи, включая преобразование органических веществ органотрофами, и разного рода симбиотические отношения, паразитизм, иногда внутриклеточный (риккетсии), и патогенез. Наличие бактерий и др. микроорганизмов в естественных местах обитания является важнейшим фактором, определяющим целостность экологии, систем. В экстремальных условиях, непригодных для существования других организмов, бактерии могут представлять единственную форму жизни.

    Бактерии  активно участвуют в биогеохимических циклах на нашей планете (в т. ч. в  круговороте большинства химических элементов). Деятельность бактерий имеет также глобальный характер.

    Например, из 4,3-1010 т (гигатонн) органического  углерода, фиксированного в процессе фотосинтеза в мировом океане, около 4,0-1010 т минерализуется в водной толще, причём 70-75% из них - бактериями и  некоторыми другими микроорганизмами, а суммарная продукция восстановленной серы в осадках океана достигает 4,92-108 т в год, что почти в три раза превышает суммарную годовую добычу всех видов серосодержащего сырья, используемого человечеством.

    Основная  часть парникового газа - метана, поступающего в атмосферу, образуется бактерииями (метаногепами).

    Бактерии  являются ключевым фактором почвообразования, зон окисления сульфидных и серных месторождений, образования железных и марганцевых осадочных пород  и т.д.

    Некоторые бактерии вызывают тяжёлые заболевания у человека, животных и растений. Нередко они становятся причиной порчи селхоз. продукции, разрушения подземных частей зданий, трубопроводов, металлических конструкций шахт, подводных сооружений и т.д. Изучение особенностей жизнедеятельности этих бактерии позволяет разработать эффективные способы защиты от вызываемых ими повреждений. В то же время положительную роль бактерий для человека невозможно переоценить.

    С помощью бактерий получают вино, молочные продукты, закваски и др. продукты, ацетон и бутанол, уксусную и лимонную кислоты, некоторые витамины, ряд ферментов, антибиотики и каротиноиды. Бактерии участвуют в трансформации стероидных гормонов и др. соединений. Их используют для получения белка (в т. ч. ферментов) и ряда аминокислот. Применение бактерий для переработки с.-х. отходов в биогаз или этанол даёт возможность создания принципиально новых возобновляемых энергетических ресурсов. Бактерии используют для извлечения металлов (в т.ч. золота), увеличения нефтеотдачи пластов.

    Благодаря бактериям и плазмидам стало  возможным развитие генетической инженерии. Изучение бактерий сыграло огромную роль в становлении многих направлений  биологии, в медицине, агрономии  и др. Велико их значение в развитии генетики, т.к. они стали классическом объектом для изучения природы генов и механизмов их действия.

    С бактериями связано установление путей  метаболизма различных соединений и др.

    Потенциал бактерий в практическом отношении  неисчерпаем. Углубление знаний об их жизнедеятельности открывает новые направления эффективного использования бактерий в биотехнологии и других отраслях промышленности.

 

     3. Особенности организации  эукариот на примере  простейших

    Появление эукариотической клетки можно по праву назвать вторым по значению (после зарождения самой жизни) событием биологической эволюции (Martin, Russel, 2003). Прямые сведения о том, где, когда, каким образом, в силу каких причин и в каких условиях произошел этот ароморфоз, практически отсутствуют, а имеющиеся косвенные свидетельства оставляют широкий простор для различных догадок, порой весьма противоречивых.

    К прямым свидетельствам можно отнести  лишь обнаруженные в отложениях возрастом 2,7 млрд лет специфические для  эукариот биомаркеры – остатки стероидных соединений, встречающихся только в мембранах эукариотических клеток

    Сто лет назад российский биолог К.С. Мережковский высказал предположение, что эукариотная клетка возникла в результате симбиоза нескольких самостоятельных  организмов. Эта идея стала одной  из главных парадигм современной биологии.

    Все живые организмы, населяющие нашу планету, делятся на две большие группы: прокариоты (безъядерные)и эукариоты (ядерные). Прокариоты — это бактерии, у которых наследственный материал представлен простой кольцевой молекулой ДНК. Ядерными называются различные одноклеточные и многоклеточные организмы(простейшие, растения, животные и грибы), в клетках которых имеется оформленное ядро с хромосомами, в которых линейные молекулы ДНК связаны с особыми ядерными белками — гистонами. Помимо ядра в клетках эукариотных организмов есть и другие органеллы: митохондрии, жгутики, хлоропласты. Когда и как возникли эукариотные организмы, господствующие в современной биосфере?

    Биосферные  предпосылки возникновения эукариотных  организмов

    Согласно  современным представлениям, наша планета сформировалась около 4,5 млрд. лет назад. Первоначально Земля была сухой, вода появилась в результате дегазации недр — выхода в атмосферу водяного пара и газов, составлявших древнюю атмосферу. По мере конденсации водяного пара появлялись сначала мелкие лужицы, которые понемногу становились всё больше и больше.

    Однако  понадобилось 500–700 млн. лет для того, чтобы на Земле возникли более или менее крупные водоёмы, которые постепенно сформировали гидросферу — жидкую оболочку нашей планеты, занимающую в настоящее время около 70% её поверхности. Затем в результате оседания на дно водоёмов различных частичек образовались и осадочные породы.

    Древнейшими осадочными породами считаются графитизированные  сланцы из формации Исуа в Гренландии — их возраст составляет около 3,8 млрд. лет. Удивительно, что в этих породах обнаружены несомненные признаки некогда существовавшей жизни — следы деятельности организмов, осуществлявших процесс фотосинтеза. Дело в том, что в органическом веществе, созданном в процессе фотосинтеза, соотношение изотопов углерода 12С и 13С меняется в пользу более легкого изотопа 12С.

    И что бы с данным веществом ни происходило  в дальнейшем, такое соотношение  в нём будет сохраняться. Углерод  в сланцах формации Исуа — явно органического происхождения.

    Это означает, что уже 3,8 млрд. лет назад  в первичных водоёмах планеты (скорее всего Мирового океана в то время ещё не существовало) жили организмы, способные к фотосинтезу. Окаменевшие клетки, сходные с современными цианобактериями, обнаружены в породах возрастом 3,5 млрд. лет (формация Варравуна в Австралии). В чуть более молодых отложениях (более3,1 млрд. лет) найдены остатки хлорофилла — фитан и пристан, а также специфические пигменты цианобактерий — фикобилины.

    Разумеется, среди организмов той поры были не только фотосинтетики, использующие энергию солнечного света, но и хемосинтетики, получающие энергию за счёт различных химических реакций. В первые миллиарды лет существования биосферы вследствие деятельности хемосинтетических бактерий сформировались многие (еслине большинство) из рудных залежей, которыми до сих пор пользуется человечество, поэтому в рудных телах нередко находят окаменевшие остатки бактерий. Например, такое крупное месторождение железных руд, как Курская магнитная аномалия, по современным данным, образовалось в результате деятельности бактерий.

    Нет сомнения в том, что на протяжении значительной части своей истории (не менее 2 млрд. лет) биосфера была прокариотной, то есть в её состав входили только организмы, сходные с современными бактериями. Эукариотные организмы — разнообразные одноклеточные простейшие, а позднее (600–800 млн. лет назад) и многоклеточные организмы — заняли своё место в биосфере лишь около 1 млрд. лет назад.

    Прокариоты  и эукариоты — две главные разновидности живых существ на нашей планете. Биологи и медики, правда, активно изучают ещё одну группу биологических объектов — вирусы, но они проявляют свойства живого организма только внутри клеток своих „хозяев“.

    Размеры прокариотных клеток в большинстве случаев колеблются от 0,5 до 3 мкм, а самые мелкие(микоплазмы) не превышают 0,10–0,15 мкм.

    Гигантские  клетки некоторых серобактерий достигают 100 мкм в длину, а клетки спирохет иногда вырастают до 250 мкм. Главная  черта прокариот — отсутствие ядра. Их генетический материал (генофор) представлен единственной кольцевой молекулой двухцепочечной ДНК, закреплённой на цитоплазматической мембране, одевающей клетку.

    Прокариоты  не имеют ядерной оболочки, эндоплазматического  ретикулюма (иногда имеются впячивания поверхностной мембраны — так называемые мезосомы), митохондрий, пластид и других цитоплазматических органелл, свойственных эукариотам.

    У них отсутствуют и микротрубочки, поэтому они не имеют ни центриолей, ни веретена деления. Рибосомы прокариот  лишены одного из типов рибосомальной РНК(так называемой 5,8S РНК) и имеют меньшую массу, чем у эукариот.

    Обычно  масса рибосом оценивается так  называемой константой седиментации(показателем скорости оседания при центрифугировании).

    Для рибосом прокариот она равна 70S, а для эукариот — 80S.

    Прокариоты  обладают громадным (по сравнению с эукариотами) разнообразием обменных процессов.

    Они способны к фиксации углекислоты, азота, различным вариантам брожения, окислению  всевозможных неорганических субстратов (соединений серы, железа, марганца, нитритов, аммиака, водорода и др.). Среди прокариот немало фотосинтезирующих форм, прежде всего это часто встречающиеся в современной биосфере цианобактерии, которые ещё называют сине-зелёными водорослями. Они(или родственные им организмы) были широко распространены и в далёком прошлом. Геологические постройки, созданные древними цианобактериями (вероятно, вместе с другими фотосинтезирующими прокариотами) — строматолиты, — нередко обнаруживаются в древнейших слоях земной коры, соответствующих архею и раннему протерозою. Начавшаяся около 4 млрд. лет назад деятельность фотосинтезирующих и других автотрофных прокариот имела несколько важнейших последствий.

    Первое  связано с изменением атмосферы  Земли. Дело в том, что в древности  она была практически бескислородной. В результате фотосинтеза молекулярный кислород стал выделяться в атмосферу, но быстро связывался с неокисленными компонентами литосферы — железом и другими металлами. Поэтому, несмотря на наличие постоянного источника свободного кислорода, биосфера оставалась по преимуществу анаэробной. Живые организмы в этот период тоже были представлены в основном анаэробами. В литосфере между тем откладывались полосчатые железные руды (так называемые джеспилиты), в которых окисленное железо чередовалось с недоокисленным.

    В бескислородных условиях откладывались  пириты (руды типа FeS2), которые не могли формироваться при наличии свободного кислорода. Находки подобных ископаемых позволяют установить, что, несмотря на обилие фотосинтетиков, анаэробный период в развитии биосферы длился почти 2 млрд. лет.

Информация о работе Биология как наука