Автор работы: Пользователь скрыл имя, 07 Января 2011 в 22:58, курсовая работа
Печень самый крупный из паренхиматозных органов. Она выполняет ряд ключевых функций.
1.Проникают в гепатоциты, подвергаются химическим превращениям и в Принимает и распределяет вещества, поступающие в организм из пищеварительного тракта, которые приносятся с кровью по воротной вене. Эти вещества виде промежуточных или конечных метаболитов поступают в кровь и разносятся в другие органы и ткани.
2.Служит местом образования желчи.
3.Синтезирует вещества, которые используются в других тканях.
4.Инактивирует экзогенные и эндогенные токсические вещества, а также гормоны.
Введение………………………………………………………………… 5
1.Строение и функции печени …………………………………………. 6
1.1 Строение печени ………………………………………………… …6
1.2 Функции печени………………………………………………………7
1.2.1 Белковый обмен ……………………………………………………7
1.2.2 Углеводный обмен ……………………………………………….11
1.2.3 Липидный обмен ………………………………………………… 12
1.2.4 Обмен витаминов ………………………………………………...13
1.2.5 Водный и минеральный обмен ………………………………….13
1.2.6 Обмен желчных кислот и желчеобразование …………………. 13
1.2.7 Пигментный обмен ……………………………………………….17
1.2.8 Обмен гормонов ………………………………………………….20
1.2.9 Детоксицирующая функция …………………………………….. 21
Вывод …………………………………………………………………….23
Список использованной литературы ………………………………… 24
При острых и хронических заболеваниях печени могут возникать изменения обмена аминокислот и белков вследствие уменьшения функциональной массы гепатоцитов и вследствие наличия портосистемного шунта потока крови.
Нарушения обмена аминокислот при хронических заболеваниях печени выявляются тем, что спектр аминокислот в плазме по сравнению со здоровыми при хронических заболеваниях печени характеризуется понижением содержания аминокислот с разветвленными цепями на 30-50% (лейцин, изолейцин, валин) и повышением содержания ароматических аминокислот (тирозин, фениламин и метионин).Понижение содержания аминокислот с разветвленными аминокислотами(цепями) приводит при хронических заболеваниях печени к наблюдаемой гиперинсулинемии. Гиперинсулинемия обусловлена повышенным распадом аминокислот с разветвленными цепями на переферии, в мускулатуре и жировой ткани и, следовательно, к понижению содержания этих аминокислот в плазме. Повышение содержания ароматических аминокислот в плазме при хронических заболеваниях печени объясняется уменьшением распада этих аминокислот в печени вследствие нарушения функций печени, поскольку содержание ключевых печеночных ферментов распада ароматических аминокислот, для триптофана - триптофанпирролаза, в печени понижено .
Поскольку при хронических болезнях печени и при циррозе также уменьшена скорость синтеза мочевины вследствие уменьшения содержания ферментов цикла мочевины, таким образом, объясняется повышение содержания аминокислот плазмы, особенно ароматических аминокислот, а также в уменьшенном распаде аминокислот в цикле мочевины .Поскольку обезвоживание ионов аммония в цикле мочевины локализуется в перипортальной зоне печеночного ацинуса, и при циррозе особенно повреждает- ся морфологически перипортальный регион, что объясняется уменьшением скорости синтеза мочевины при хронических заболеваниях печени и наступившей гипераммониемией, а также склонностью к развитию метаболического алкалоза. Метаболический алкалоз имеет место при хронических заболеваниях печени вследствие снижения потребления бикарбоната вследствие уменьшения скорости синтеза мочевины, причем компенсаторно для обезвреживания аммиака в перивенозной зоне печеночного ацинуса может быть повышен синтез глютамина.
При
наличии застойной печени перивенозная
зона печеночного ацинуса необратимо
повреждена в отношении обезвреживания
ионов аммония посредством синтеза глютамина.
Это может приводить к метаболическому
ацидозу вследствие уменьшенного выделения
аммония почками при застойной печени
.Таким образом, изменения метаболизма
аминокислот и обезвреживания аммония
при хронических болезнях печени представляют
собой важные факторы в патогенезе изменений
кислотно-щелочного равновесия и в возникновении
печеночной энцефалопатии.
1.2.2.
Углеводный обмен
Участие печени в углеводном обмене включает в себя следующие функции :
Печень занимает ключевые позиции в углеводном обмене: ей принадлежит главная роль в поддержании стабильной концентрации глюкозы в сыворотке крови. Это достигается за счет:
В пострезорбтивной фазе, примерно через 4 часа после приема пищи, потребность организма в глюкозе составляет примерно 7,5 г в час, причем мозг потребляет 6 г в час и эритроциты 1,5 г в час. Эта потребность в глюкозе покрывается печенью, где 4,5 г в час поставляется за счет распада гликогена и 3 г в час - глюконеогенезом из лактата, аминокислот и глицерина .
При обычном питании с потреблением углеводов, равном примерно 100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасывается примерно 40-60 г глюкозы в час. Мозг и эритроциты потребляют только примерно 7,5 г в час. Избыточная глюкоза преж- де всего воспринимается печенью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы одновременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение.
Фруктоза превращается в печени при помощи фермента фруктокиназы во фруктозо-1-фосфат и, наконец, альдолазой печени переводится в триозы глицеринальдегид и дигидроксиаце- тон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной печени в лактат превращается около 70% поглощенной фруктозы. При инфузии фруктозы происходит повышение уровня лактата в сыворотке в 2-5 раз с развитием лакта- тацидоза, в то время как при инфузии глюкозы в крови наблю- дается лишь двукратный подъем концентрации лактата. Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследствие очень высокой активности фруктокиназы в печени, с полувременем, равным 18 минутам, фруктоза очень быстро переводится в печени в лактат.
Галактоза
в тонком кишечнике освобождается
из лактозы, при пассаже крови
воротной вены через печень почти
полностью удаляется
1.2.3
Липидный обмен.
Роль
печени в метаболизме липидов и липопротеинов
состоит в синтезе липидов (триглицериды,
холестерин и фосфолипиды), липопротеинов
(ЛГОНП и ЛПВП), апопротеинов, липопротеи-
нов и ферментов метаболизма липопротеинов
и жиров (лецитин-холестерин-
В липидном и липопротеиновом обмене жирные кислоты с ко- роткими и средними цепями транспортируются из пищи через во- ротную вену прямо в печень, в то время как жирные кислоты с длинными цепями должны расщепляться в слизистой оболочке тонкого кишечника на триглицериды, они, как и холестерин пи- щи, транспортируются в виде хиломикрон.Хиломикроны, которые через грудной проток попадают в кровь, посредством липопро- теилипазы превращаются в остатки хиломикрон, которые воспринимаются Е-рецепторами аполипопротеинов печени. Экзогенный холестерин здесь смешивается с эндогенным холестерином и выделяется печенью с желчью, метаболизируется в желчные кисло- ты или с синтезируемыми в печени триглицеридами выводится в кровь в виде ЛПОНП.
ЛПОНП
в качестве важнейшего богатого триглицеридами
липопротеина синтезируется печенью,
в крови подвергается метаболическому
каскаду при взаимодействии с липопротеинлипазой
и, вероятно, также при участии печеночной
триглицеридлипазы в ЛПНП . ЛПНП представляют
собой для переферических клеток главный
источник холестерина.С другой стороны,
частичны ЛПНП воспринимаются рецепторами
ЛПНП гепатоцитов в клетки печени и лизосомальными
ферментами разрушаются на компоненты.
В гепатоцитах повышение содержания свободного
холестерина вызывает торможение HMG-СоА-редуктазы,
ключевого фермента синтеза холестерина,
активацию ацил-КоА-холестерин-ацилт-
рансферазы и следовательно, накопление
свободного холестерина в форме эфиров
холестерина и, наконец, торможение образования
рецепторов ЛПНП в клетках, следствием
чего является поглощения холестерина.
Зависимое от рецепторов поглощение
ЛПНП представляет собой существенный
элемент регуляции синтеза холестерина
в теле и гомеостаза холестерина .
Наряду
с ЛПОНП в печени также происходит
первый этап синтеза ЛПВП, образования
ЛПВП и передача их в кровь. При воздействии
лецитин-холестерин-
ЛПВП представляет собой резервуар для
избыточного холестерина периферических
клеток, который транспортируется к печени
и там образует запас холестерина, который
используется для желчной секреции холестерина,
распада желчных кислот или для повторной
утилизации. Вследствие этой центральной
роли печени в метаболизме липопротеинов
при заболеваниях печени имеют место качественные
и количественные изменения липидов плазмы.
1.2.4 Обмен витаминов.
Печень участвует в обмене почти всех
витаминов. Она заключается в выполнении
следующих функций:
1.2.5.
Водный и минеральный
обмен.
Роль печени в поддержании минерального обмена заключается главным образом в ее участии обмена и депонирования меди, железа и цинка.
Участие печени в водно-солевом обмене связано:
1.2.6.
Обмен желчных
кислот и желчеобразование
Желчные кислоты подвергаются кишечно-печеночной циркуляции. Ежедневно в печени синтезируется 200-600 мг желчных кислот из холестерина. Этот синтез выравнивается дневной потерей желчных кислот в кале (200-600 мг) и в моче (0,5 мг), так что запас желчных кислот в организме человека остается постоянным и равным 3 г. В печени также происходит конъюгация желчных кислот с аминокислотами глицином и таурином, сульфатирование, глюкуронирование и глюкозирование. Выделяемые в желчь желчные кислоты при голодании преимущественно попадают в желчный пузырь. Во время пищеварения после сокращения желч- ного пузыря запас желчных кислот 2-3 раза проходит кишечно-печеночный цикл, причем основная часть желчных кислот резорбируется в терминальной части тонкого кишечника, так что ежедневно, в случае 3-4-кратного приема пищи 12-36 г желчных кислот поступает в тонкий кишечник.Только незначительная часть желчных кислот поступает в толстый кишечник и метаболизируется ферментами микробов. Часть этих желчных кислот резорбируется в толстом кишечнике. Резорбируемые в кишке желчные кислоты кровью воротной вены доставляются к печени и большей частью воспринимаются гепатоцитами. Небольшая часть желчных кислот экстрагируется гепатоцитами из крови воротной вены и поступает в переферическую циркуляцию, так что при физиологических условиях концентрация желчных кислот в переферической крови составляет 120-200 мкг/дл (3-5 мкмоль/л), что очень низко. Циркулирующие в переферической крови желчные кислоты лишь незначительно выделяются с мочой (0,5 мг/сут=1,3 мкМ/сут), поскольку печень эти желчные кислоты экстрагирует с высокой эффективностью и выделяет с желчью.Таким способом запас желчных кислот сохраняется посредством кишечной экстракции и секреции в желчь.
Синтез желчных кислот.
В печени происходит синтез первичных желчных кислот (холевая и хенодезоксихолевая кислоты) из неэстерифицированного холестерина. Первый шаг синтеза желчных кислот состоит в 7а-гидроксилировании холестерина при воздействии расположен- ной в микросомах холестерин-7а-гидроксилазы.Это ферментативное 7а-гидроксилирование холестерина является шагом, определяющим скорость биосинтеза желчных кислот, активность фермента холестерин-7а-гидроксилазы регулируется количеством желчных кислот, воспринимаемых гепатоцитами из воротной вены, посредством торможения по принципу обратной связи. Последующие шаги биосинтеза состоят в перемещении двойной связи от 7а-гидроксихолестерина к 7а-гидроксихолес- тен-4-еn-3-ону.Этот промежуточный продукт представляет собой пункт разветвления для синтеза в направлении холевой кислоты или хенодезоксихолевой кислоты. При помощи 12а-гидроксилирования посредством расположенной в эндоплазматическом ретикулуме 12а гидроксилазы происходит синтез холевой кислоты. После прохождения этого места разветвления в цитозоле происходит насыщение двойной связи и восстановление 3-оксо-группы в 3а-гидроксигруппу.Когда эти ферментативные реакции на стероидном ядре заканчиваются, причем две гидроксигруппы являются предступенями для хенодезоксихолевой кислоты или три гидроксигруппы являются предступенями холевой кислоты в стероидном ядре, то происходит укорочение боковой цепи в митохондриях после гидроксилирования у С-24 и образуются С-24 желчные кислоты, т.е. хенодезоксихолевая или холевая кислоты.
Конъюгация желчных кислот в печени.
В печени желчные кислоты перед выделением в желчь конъюгируют с аминокислотами глицином и таурином в соотношении 3:1. Возможно также сульфатирование , глюкуронирование и глюкозирование желчных кислот (55) в печени человека. При помощи этих конъюгаций повышается растворимость желчных кислот. Выделяемые с желчью желчные кислоты в кишечнике подвергаются, если они всасываются неизмененными, дальнейшему метаболизму при помощи бактериальных ферментов.
Интерстициальное всасывание и бактериальный метаболизм желчных кислот.
Неконъюгированные желчные кислоты и глицин-конъюгированные дигидроксилированные желчные кислоты могут всасываться пассивной диффузией в верхней тонкой кишке, поскольку эти желчные кислоты не диссоциируют. Поскольку в просвете верхней тонкой кишки значение рН составляет от 5,5 до 6,5 и значения рК для свободных неконъюгированных желчных кислот составляют от 5,0 до 6,5 и для глицин-конъюгированных желчных кислот составляют между 3,5 и 5,2, то резорбция этих желчных кислот возможна в верхней тонкой кишке. Основное количество конъюгированных желчных кислот, в особенности, полярных таурин-конъюгированных желчных кислот и тригидроксилированных желчных кислот, резорбируется вследствие диссоциации и посредством активного транспорта в терминальном отделе подвздошной кишки.