Радиация и жизнь

Автор работы: Пользователь скрыл имя, 08 Марта 2011 в 23:43, реферат

Описание работы

Большинство нуклидов (ядра всех изотопов химических элементов) нестабильны и постоянно превращаются в другие нуклиды. Цепочка превращений сопровождается излучениями: в упрощенном виде, испускание ядром двух протонов и двух нейтронов (a-частицы) называют a-излучением, испускание электрона – b-излучением, причем оба этих процесса происходят с выделением энергию. Иногда дополнительно происходит выброс чистой энергии, называемый g-излучением.

Файлы: 1 файл

радиация.doc

— 167.50 Кб (Скачать файл)

      Из-за отсутствия более полных данных НКДАР ООН был вынужден принять за общую оценку годовой коллективной эффективной эквивалентной дозы, по крайней мере, от рентгенологических обследований в развитых странах на основе данных, представленных в комитет Польшей  и Японией к 1985 году, значение 1000 чел-Зв на 1 млн. жителей. Скорее всего, для развивающихся стран эта величина окажется ниже, но индивидуальные дозы могут быть значительнее. Подсчитано также, что коллективная эффективная эквивалентная доза от облучения в медицинских целях в целом (включая использование лучевой терапии для лечения рака) для всего населения Земли равна примерно 1 600 000 чел-Зв в год.

     Следующий источник облучения, созданный руками человека – радиоактивные осадки, выпавшие в результате испытания  ядерного оружия в атмосфере, и, несмотря на то, что основная часть взрывов была произведена еще в 1950-60е годы, их последствия мы испытываем на себе и сейчас.

      В результате взрыва часть радиоактивных  веществ выпадает неподалеку от полигона, часть задерживается в тропосфере и затем в течение месяца перемещается ветром на большие расстояния, постепенно оседая на землю, при этом оставаясь примерно на одной и той же широте. Однако большая доля радиоактивного материала выбрасывается в стратосферу и остается там более продолжительное время, также рассеиваясь по земной поверхности.

      Радиоактивные осадки содержат большое количество различных радионуклидов, но из них  наибольшую роль играют цирконий-95, цезий-137, стронций-90 и  углерод-14, периоды  полураспада которых составляют соответственно 64 суток, 30 лет (цезий и стронций) и 5730 лет.

      По  данным НКДАР, ожидаемая суммарная  коллективная эффективная эквивалентная доза от всех ядерных взрывов, произведенных к 1985 году, составляла 30 000 000 чел-Зв. К 1980 году население Земли получило лишь 12% этой дозы, а остальную часть получает до сих пор и будет получать еще миллионы лет.

      Один  из наиболее обсуждаемых сегодня  источников радиационного излучения  является атомная энергетика. На самом деле, при нормальной работе ядерных установок ущерб от них незначительный. Дело в том, что процесс производства энергии из ядерного топлива сложен и проходит в несколько стадий.

      Ядерный топливный цикл начинается с добычи и обогащения урановой руды, затем производится само ядерное топливо, а после  отработки топлива на АЭС иногда возможно вторичное его использование через извлечение из него урана и плутония. Завершающей стадией цикла является, как правило, захоронение радиоактивных отходов.

      На  каждом этапе происходит выделение  в окружающую среду радиоактивных веществ, причем их объем может сильно варьироваться в зависимости от конструкции реактора и других условий. Кроме того, серьезной проблемой является захоронение радиоактивных отходов, которые еще на протяжении тысяч и миллионов лет будут продолжать служить источником загрязнения.

      Дозы  облучения различаются в зависимости  от времени и расстояния. Чем дальше от станции живет человек, тем  меньшую дозу он получает.  

      Из  продуктов деятельности АЭС наибольшую опасность представляет тритий. Благодаря своей способности хорошо растворяться в воде и интенсивно испаряться тритий накапливается в использованной в процессе производства энергии воде и затем поступает в водоем-охладитель, а соответственно в близлежащие бессточные водоемы, подземные воды, приземной слой атмосферы. Период его полураспада равен 3,82 суток. Распад его сопровождается альфа-излучением. Повышенные концентрации этого радиоизотопа зафиксированы в природных средах многих АЭС.

      До  сих пор речь шла о нормальной работе атомных электростанций, но на примере Чернобыльской трагедии мы можем сделать вывод о чрезвычайно большой потенциальной опасности атомной энергетики: при любом минимальном сбое АЭС, особенно крупная, может оказать непоправимое воздействие на всю экосистему Земли.

      Масштабы  Чернобыльской аварии не могли не вызвать оживленного интереса со стороны общественности. Но мало кто догадывается о количестве мелких неполадок в работе АЭС в разных странах мира.

      Так, в статье М. Пронина, подготовленной по материалам отечественной и зарубежной печати в 1992 году, содержатся следующие данные:

      «…С 1971 по 1984 гг. На атомных станциях ФРГ  произошла 151 авария. В Японии на 37 действующих  АЭС с 1981 по 1985 гг. зарегистрировано 390 аварий, 69% которых сопровождались утечкой радиоактивных веществ.…  В 1985 г. в США зафиксировано 3 000 неисправностей в системах и 764 временные остановки АЭС…»       и т.д.

      Кроме того, автор статьи указывает на актуальность, по крайней мере на 1992 год, проблемы намеренного разрушения предприятий ядерного топливного энергетического цикла, что связано с неблагоприятной политической обстановкой в ряде регионов. Остается надеяться на будущую сознательность тех, кто таким образом «копает под себя».

      Осталось  указать несколько искусственных  источников радиационного загрязнения, с которыми каждый из нас сталкивается повседневно.

      Это, прежде всего, строительные материалы, отличающиеся повышенной радиоактивностью. Среди таких материалов – некоторые разновидности гранитов, пемзы и бетона, при производстве которого использовались глинозем, фосфогипс и кальциево-силикатный шлак. Известны случаи, когда стройматериалы производились из отходов ядерной энергетики, что противоречит всем нормам. К излучению, исходящему от самой постройки, добавляется естественное излучение земного происхождения. Самый простой и доступный способ хотя бы частично защититься от облучения дома или на работе – чаще проветривать помещение.

      Повышенная  ураноносность некоторых углей  может приводить к значительным выбросам в атмосферу урана и  других радионуклидов в результате сжигания топлива на ТЭЦ, в котельных, при работе автотранспорта.

      Существует  огромное количество общеупотребительных  предметов, являющихся источником облучения. Это, прежде всего, часы со светящимся циферблатом, которые дают годовую  ожидаемую эффективную эквивалентную дозу, в 4 раза превышающую ту, что обусловлена утечками на АЭС, а именно   2 000 чел-Зв («Радиация…», 55). Равносильную дозу получают работники предприятий атомной промышленности  и экипажи авиалайнеров.

      При изготовлении таких часов используют радий. Наибольшему риску при этом подвергается, прежде всего, владелец часов.

      Радиоактивные изотопы используются также в  других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.

      При производстве детекторов дыма принцип  их действия часто основан на использовании a-излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран. Очень незначительны дозы облучения от цветных телевизоров и  рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cначала — две цитаты: из раздела «Пишут, что...» и из статьи А. М. Чекмарева «Радиоактивность вокруг нас» (обе — из «Химии и жизни», 2008, № 10). Цитата первая: «Практически все клетки человеческого тела ежегодно испытывают хотя бы одно событие радиационного поражения, многие — несколько раз». И вторая: «Большинство людей получает от 0,3 до 0,6 миллизиверта в год за счет земной радиации... В среднем от земных источников естественной радиации мы получаем примерно 350 микрозивертов в год (то есть индивидуальные дозы у большинства из нас ближе к 0,3 миллизиверта)... Если говорить о том, какой именно элемент вносит наибольший вклад в наше внутреннее облучение, то это газ радон и продукты его распада. Его доля — около 75% годовой индивидуальной дозы облучения человека от земных источников и около половины дозы от всех источников радиации». (Кстати, более подробно об облучении от вездесущего радона можно прочитать в статье «Еще раз о радиоактивности в нашем доме», опубликованной в № 4, 1990.)

Прежде всего — несколько слов о единице облучения в статье Чекмарева. Она названа в честь шведского физика Рольфа Максимилиана Зиверта (1896–1966). Это — единица эквивалентной дозы излучения в СИ, принятая на XVI Генеральной конференции по мерам и весам в 1979 году (с 1975 по 1979 год она назвалась «грэй»). Зиверт (Зв) равен дозе любого вида ионизирующего излучения, производящего такое же биологическое действие, как и доза рентгеновского или гамма-излучения в 1 Гр, а эта единица (как единица поглощенной дозы) названа в честь английского физика Луиса Гарольда Грэя (1905–1965). Один грэй — поглощенная доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж. Значит, для среднего человека массой 70 кг 1 Зв соответствует общей поглощенной энергии 70 Дж. Для теплотехники это небольшая величина, ее достаточно для нагрева стакана воды менее чем на 0,1 градуса. Для человека же такая доза, особенно если она однократная, означает исключительно сильное поражение. Поэтому на практике применяют дольные единицы: 1 мЗв и 1 мкЗв.

Мало кто знает, что, если человека поместить в свинцовую камеру с толстыми стенками и никакой радон в его легкие попадать не будет, он все равно будет облучаться. Источник этого облучения — радионуклиды в его собственном теле, которые попали к нему при рождении и продолжают пополняться всю его жизнь. Избавиться от них невозможно принципиально, как, например, невозможно избавить человека от кальция или фосфора в его организме. Таких радионуклидов, вносящих основной вклад во внутреннее облучение, всего два. Это калий-40 и углерод-14 (так называемый радиоуглерод).

Начнем с калия. Это один из наиболее распространенных элементов в земной коре: его в  ней 2,1%. Калий представлен в природе  тремя изотопами:

 

В среднем относительная  атомная масса калия с учетом распространенности его изотопов равна 39,0983. Один из этих изотопов, 40K, радиоактивен, хотя его активность и невелика, поскольку очень велик период полураспада (t1/2 = 1,28·10лет). Исходя из приведенных данных, можно рассчитать, какую радиацию мы получаем за счет распада калия в собственном теле. В человеке массой 70 кг содержится примерно 0,2% калия, или 140 г (кстати, это больше, чем натрия, которого в человеке около 100 г). Следовательно, средний человек всегда носит в своем теле 0,0164 г радиоактивного калия-40, или 2,47·1020 атомов.

Скорость радиоактивного распада — уравнение первого порядка, то есть она пропорциональна числу имеющихся атомов (N): dN/dt = –kN; знак минус показывает, что число атомов уменьшается со временем. (В радиохимии константу k обычно называют постоянной распада и обозначают греческой буквой λ.) Константа k связана с периодом полураспада простым соотношением: k = ln2/t1/2 = 0,693/1,28·10= 5,41·10–10 год–1. То есть в теле человека распадается 5,41·10–10 × 2,47·1020 = 1,34·1011 атомов за год — больше ста миллиардов, или 4250 атомов каждую секунду!

Какая же энергия  выделяется при этом? Нуклид 40K распадается по двум путям: на 11% он претерпевает электронный захват (его еще называют K-захватом, по номеру оболочки, с которой происходит захват электрона): 40K + е → 40Ar. Именно в результате такого распада 40K в земной коре и образовалась основная часть атмосферного аргона. Этот процесс является также основой так называемого калий-аргонового метода в геохронологии. Остальные 89% 40K (1,2·1011 атомов в год) распадаются с испусканием бета-излучения: 40K → 40Ca + е. Энергия этих β-частиц равна 1,314 МэВ = 1,314·10эВ. Как известно, 1 эВ соответствует 96 500 Дж/моль, или 96 500/6·1023 = 1,6·10–19 Дж в расчете на одну частицу. Следовательно, энергия всех испущенных за год в теле человека β-частиц составит 1,314·106х1,6·10–19 × 1,2·1011 = 0,025 Дж или 0,36 мЗв.

Но и это  не всё. Помимо калия-40 в нашем теле всегда присутствует радиоактивный углерод-14 с периодом полураспада 5730 лет, избавиться от которого тоже нельзя. Земля, как известно, подвергается непрерывному облучению космическими частицами. Если бы не атмосфера, пропускающая к земной поверхности лишь небольшую часть космического излучения, жизнь на Земле вряд ли была бы возможна. Из разнообразных ядерных реакций, идущих в верхних слоях атмосферы, нас сейчас интересует лишь одна — захват нейтронов атомами азота, при котором из ядра вылетает один протон: 14N + n → 14C + р.

Информация о работе Радиация и жизнь