Автор работы: Пользователь скрыл имя, 03 Апреля 2010 в 09:25, Не определен
Остановимся лишь на ключевых, концептуальных положениях, сгруппировав их в три больших класса, сообразно масштабу объектов и рассматриваемых процессов: микро-, макро- и мега- .
Очень близко к этим вопросам примыкает универсальный принцип наименьшего действия, справедливый и в классической и квантовой механике, и в электродинамике, и в оптике и т. д. Действием в физике называют определенную величину, характеризующую энергетику системы. Установлено, что движение тела в поле внешних сил, распространение света в оптически неоднородной среде, распределение линий электрического тока, протекающего по проводнику и т. д. происходит так, что величина действия на пути, выбранном природой, оказывается наименьшей из всех виртуально возможных. Так, тело, брошенное под углом к горизонту, летит по параболе, а не какой-либо еще мыслимой кривой; луч света, преломляясь на границе двух разных прозрачных сред, подчиняется известному со времен Средневековья закону Снелиуса (отношение синусов углов падения и преломления есть величина постоянная); электрический ток или ламинарный поток жидкости в канале огибают препятствие по определенным траекториям, также минимизирующим действие. Т.е. природа знает, как наиболее экономно перевести систему из одного состояния в другое в любой точке траектории этого процесса! Даже далекие от науки люди знают, что жизнь идет «по линии наименьшего сопротивления», что можно считать бытовой формулировкой великого принципа наименьшего действия в окружающем мире. К нему могут быть сведены многие фундаментальные теории, в частности, классическая механика, электродинамика, квантовая теория поля и др.
Самоорганизация. Возможно, одна из самых захватывающих и масштабных доктрин, оформившихся в науке конца 20-го века – это концепция самоорганизации, под которой понимают самопроизвольное установление порядка (без участия внешних организующих воздействий) в неравновесных диссипативных системах. Первые систематические исследования в этой области провел выходец из России И. Пригожин в 60-е годы (Нобелевская премия в 1977 г.). Впоследствии направление в науке, которое изучает пространственно-временное упорядочение, стали называть по предложению Г. Хакена синергетикой (от греческого слова совместный, согласно действующий). На первый взгляд, сама возможность самоорганизации (а следовательно повышения порядка в системе с соответствующим понижением энтропии) как будто бы противоречит второму началу термодинамики. Однако классическая термодинамика была создана (и до сих пор справедлива) для описания равновесных или близких к равновесию систем. Кроме того, второе начало справедливо только для замкнутых систем (т. е. не обменивающихся ничем с окружающей средой). Множество объектов и систем в природе не являются ни равновесными, ни замкнутыми (а строго говоря – все до одной!), так что классическую термодинамику следует рассматривать как первое приближение, имеющее ограниченную область применимости.
Действительно, эволюционные процессы в биологии (как на уровне отдельного организма от момента его зарождения - филогенез, так и на уровне биосферы в целом - онтогенез) идут в направлении от простого - к сложному, от беспорядка – к большему порядку, т. е. в видимом противоречии с законом роста энтропии. Но с другой стороны, ни один живой организм и не является замкнутой системой по определению. Напротив, пока он жив, он участвует в обмене веществом, энергией, информацией с окружающей средой. Таким образом, для описания живого нужна неравновесная термодинамика открытых систем, исключающая необходимость мифических витальных сил. Она была создана в последней трети 20-го века усилиями многих ученых. Вкратце она сводится к следующему. Для любой системы изменение энтропии dS складывается из двух величин:
dS=dSe+dSi,
где dSe – изменение энтропии за счет взаимодействия с окружающей средой, а dSi - изменение энтропии в результате процессов внутри самой системы. Для неравновесных систем dSi всегда положительно (dSi>0). Поэтому пока система замкнута (т. е. dSе=0) полное изменение ее энтропии может быть только положительным (рис. 7.9а).
dS= dSi>0
Другими словами, «человек в футляре» может только деградировать.
Если систему «открыть»и разрешить ей сбрасывать свою энтропию в окружающую среду (т. е. допустить dSe<0), то при некоторых условиях может оказаться, что
dS= dSe+dSi<0,
т. е. порядок в ней начинает возрастать (конечно, за счет роста беспорядка в окружающей среде). Другими словами, если провести границы достаточно далеко от нашей открытой системы, то внутри этой большой области беспорядок все равно будет нарастать, и второе начало термодинамики остается в полном здравии. При значительном падении энтропии в системе в ней могут спонтанно (самопроизвольно) образовываться упорядоченные структуры, что и называется самоорганизацией.
Одним из самых ярких и очевидных примеров самоорганизации является зарождение и развитие любого живого организма, собирающего и упорядочивающего внутри себя сложную низкоэнтропийную структуру из менее упорядоченного вещества, потребляемого из окружающей среды в качестве пищи. Минимально необходимым (но не всегда достаточным) условием самоорганизации в открытых системах является следующее:
1. Отклонение от равновесия должно превышать некоторое критическое значение;
2. Объем системы (т. е. количество элементов в ней) должен быть достаточно велик, чтобы обеспечить существование в ней необходимого количества незатухающих флуктуаций;
3. Наличие положительной обратной связи, внутри системы или между ней и окружающей средой (т. е. механизма, способствующего росту случайно возникшего движения в сторону упорядочивания, а не его подавлению, как в случае отрицательной обратной связи.
Теория
самоорганизации, родившаяся первоначально
из рассмотрения проблем неравновесной
термодинамики и конкретных задач
гидродинамики, нелинейной оптики, кибернетики
и т. д. впоследствии оказала громадное
влияние на развитие современной
физики, химии, биологии, наук о Земле,
экономики, социальных и политических
наук. Так, например, внедрение идей
самоорганизации в теорию биологической
эволюции снимает многие трудности,
существовавшие в дарвинизме: отсутствие
промежуточных форм между видами,
крайне низкую скорость эволюции путем
случайных мутаций и
С точки зрения математической, вовлечение в научный оборот концепции самоорганизации означает переход от линейных моделей (и уравнений) к нелинейным. Современная, очень развитая математика, умеет решать, главным образом, только линейные задачи. Они являются основой детерминистического подхода в науке, заложенного Галилеем и Ньютоном. Однако в свете достижений науки 20-го века следует признать, что мышление в линейном приближении не является адекватным по отношению к природным процессам. Множество явлений не могут быть описаны в рамках линейных моделей (бифуркации, катастрофы, динамический хаос и т. д.) Нелинейные же системы могут обладать крайне высокой чувствительностью к всегда имеющимся флуктуациям в природе (или ничтожным вариациям данных в математической модели). В результате становится невозможным предсказать состояние таких систем через некоторое время даже при наличие всех исходных данных. Таким образом, концепция детерминизма в природе за сто лет после создания статистической физики подверглась большим деформациям и ревизиям в третий раз (с учетом появившихся в начале 20-го века квантовомеханических представлений о причинности). Синергетику в ее нынешнем состоянии можно рассматривать, по мнению одного из ее создателей Хакена, как попытку обобщения дарвинизма, действие которого распространяется не только на органический, но и на неорганический мир.
Разумеется, эволюционные идеи (начиная с космологической гипотезы Канта и Лапласа и заканчивая эволюционной теорией Дарвина) имели широкое хождение в естествознании задолго до оформления концепции самоорганизации. Но они формировались в интуитивных терминах, не позволявших раскрыть механизмы эволюции. Живой мир противопоставлялся неживому по всем основным признакам. В частности, очень схематизированная и абстрактная термодинамика, развитая для закрытых систем, предсказывает деградацию порядка, рост энтропии в ней, в то время как все живое развивается в противоположность этому выводу, превращая хаотические системы в более организованные. Синергетика дает более общую платформу рассмотрения процессов в живых и неживых природных системах. В частности, она позволяет по новому взглянуть на такие объекты и задачи, которые стали уже привычными для науки 20-го века: лазеры, плазму, ферромагнетизм, фазовые переходы, ячейки Бенара, реакции Белоусова – Жаботинского и многие другие, где коллективные явления играют определяющую роль.
Возникает вопрос, применима ли концепция самоорганизации к еще более сложным системам – социальным? Социально – культурная эволюция бесспорно происходит и последние несколько тысяч лет намного быстрее биологической.
Безусловно, нельзя идти путем простых аналогий и скатываться на позиции примитивного социал – дарвинизма, бытовавшего еще сто лет назад. Однако учитывая, что социальные системы обладают всеми признаками, которые характеризуют системы, склонные к самоорганизации (высокий уровень сложности, нелинейность внутренних связей, интенсивное взаимодействие между внутренними подсистемами и с внешней средой), можно надеяться, что развитие и использование синергетических подходов к общественным проблемам будет таким же полезным, как и к физическим и биологическим.
Творчество в любой сфере, будь то наука, искусство, производство, можно рассматривать как «антиэнтропийную акцию», понижающую хаос в духовном или материальном окружении человека. Имея это ввиду один из создателей кибернетики Н. Винер как-то сказал: «В этом мире наша новейшая обязанность состоит в том, чтобы устраивать произвольные островки порядка и системы».
Подводя
итоги этого пункта заметим, что
проникновение идей самоорганизации во
все сферы культуры фактически привело
к смене стиля мышления. Механистический,
лапласовский стиль 18-19 века сменился
в начале 20-го века на статистически-вероятностный,
а в конце его – на синергетический.
3. Мегамир. Центральной дисциплиной изучающей мегамир как единое целое является космология. (от греческого kosmos – Вселенная и logos – знание). Современная космология – это астрофизическая теория происхождения и эволюции Вселенной, основанная на экспериментальных фактах, наблюдениях и фундаментальных физических теориях (общей теории относительности, физики элементарных частиц, фундаментальных взаимодействий и др.).
Далекие миры волновали человека с незапамятных времен. Это нашло отражение в древних мифах, представлениях об устройстве Вселенной. Ни одна религия не обходит своим вниманием эти вопросы. После того как на смену мифологии и религиозным верованиям пришла наука, космология стала одной из любимых естественнонаучных дисциплин для философии и философов различных направлений. В модулях 4, 5 и 6 мы проследили кратко эволюцию представлений о Вселенной от Античности до начала 20-го века. К чему же пришла современная космология, развивая идеи Эйнштейна, Фридмана, Гамова и др.? Что продолжает оставаться непознанным или трудно объяснимым?
Зарождение Вселенной в результате Большого Взрыва и последующее ее расширение большинством ученых считается надежно установленным фактом. Понятны многие детали процессов, сопровождавших эволюцию Вселенной, начиная примерно с возраста 10-4 с от момента ее расширения. Но состояние вещества, пространства и времени до этого момента пока является тайной. Дело в том, что прокручивая мысленно кинофильм о развитии Вселенной назад, мы должны будем прийти к неограниченному росту всех ее физических характеристик (плотности вещества, температуры, напряженности всех физических полей и т.д.) по мере приближения к нулю времени, т.е. строгому моменту ее рождения. Такое состояние называется сингулярностью (особенностью) и не может устроить физиков, поскольку приводит к бесконечным значениям важнейших физических параметров Вселенной. Современная наука знает множество способов борьбы с этими «дурными бесконечностями», которые уже не раз возникали в физике. Одним из таких способов является допущение дискретности пространства при расстояниях ~10-33см и времени при Δt~10-43с. Однако проверить столь смелые гипотезы, приводящие к очередному пересмотру свойств пространства – времени (будь они доказаны) пока совершенно нечем. Для этого необходима совершенно новая физика, которая может пролить свет и на природу свойств элементарных частиц, поскольку (как это ни парадоксально) многие проблемы микро- и мегамира сводятся к одним и тем же вопросам.