Происхождение и эволюция звезд и планет в Солнечной системе

Автор работы: Пользователь скрыл имя, 14 Февраля 2011 в 17:35, контрольная работа

Описание работы

Возникновение и исчезновение - характерные события, иллюстрирующие возможность существования невоспринимаемого чувственно измерения. Действительно, известный пример прохождения трехмерного тела через двумерную оболочку, населенную двумерными существами, воспринимающими это событие как "возникновение" некоторой границы (и ее "исчезновение", если двумерная поверхность обладает соответствующими свойствами), иллюстрирует сделанное утверждение.

Содержание работы

1. Космические масштабы
2. Методы исследования
3. Распределение вещества во Вселенной
4. Звезды и их эволюция
4.1. Аномальное развитие звезд
4.2. Космологическая проблема
5. Планеты Солнечной системы

Файлы: 1 файл

КСЕ.doc

— 118.00 Кб (Скачать файл)

Министерство  Российской Федерации  по делам гражданской  обороны, чрезвычайным ситуациям и ликвидации последствий стихийных  бедствий 

САНКТ-ПЕТЕРБУРГСКИЙ  УНИВЕРСИТЕТ ГОСУДАРСТВЕННОЙ

ПРОТИВОПОЖАРНОЙ СЛУЖБЫ 

Кафедра Философии и социальных наук 
 
 
 
 
 
 

КОНТРОЛЬНАЯ РАБОТА

по  дисциплине: «Концепции современного естествознания»

тема: «Происхождение и эволюция звезд и планет в солнечной системе» 
 
 
 
 
 

                Выполнил:

                студент 1 курса (4 года обучения),

                группы  109

                заочной формы обучения

                специальность «Юриспруденция»

                института безопасности жизнедеятельности

                Вижинтас  Екатерина Викторовна 

                Проверил:

                Иванов  Андрей Федорович 
                 
                 
                 

Санкт-Петербург

2010

 

Содержание 
 

 

Введение 

          "...И  только две вещи удивляют меня: звездное небо над моей головой  и моральный закон во мне."

          И.Кант

          "...Ведь  если звезды зажигают –Значит  - это кому-нибудь нужно?"

          В.Маяковский

     Окружающий нас мир настолько привычен, настолько естественной кажется идея о том, что он не только существует, но и является таким, каким мы его видим (воспринимаем), что подвергнуть это сомнению кажется нелепым.

     Понятие времени и его измерения неотделимо от понятия пространства. Эти два понятия являются настолько привычными, что вопрос об их определении, как правило, и не поднимается. Однако ответить на него очень непросто. В конце концов все сводится к тому, что пространство - есть способ разбиения мира на части, а время - способ упорядочения этих частей. Уже это указывает на условность этих понятий, а, значит, и на наличие концепции, лежащей в основе их определения. Нетрудно видеть, что любой инструмент, который можно использовать для измерения времени, обладает пространственной характеристикой - размером: год - орбита Земли и ее радиус, сутки - поворот шара с радиусом Земли вокруг своей оси, часы, минуты, секунды - маятники всех видов, кристаллы, длины волн излучающих атомов. Если говорить о промежутке, разделяющем появление и исчезновение объекта, не имеющего собственной пространственной характеристики - точки, то следует иметь в виду, что воспринять этот факт мы можем только с помощью органов чувств, имеющих пространственные характеристики. Таким образом, время в собственном смысле неизмеримо, и восприятие его, хотя и более привычно, ничем не отличается от восприятия четвертого пространственного измерения, для которого у нас тоже нет органов чувств. Сама концепция времени есть лишь результат ВОЗНИКНОВЕНИЯ этого понятия в чьем-то конкретном сознании, сообщения об этом другим сознаниям, а затем ИСЧЕЗНОВЕНИЯ этого конкретного сознания.

     Возникновение и исчезновение - характерные события, иллюстрирующие возможность существования  невоспринимаемого чувственно измерения. Действительно, известный пример прохождения трехмерного тела через двумерную оболочку, населенную двумерными существами, воспринимающими это событие как "возникновение" некоторой границы (и ее "исчезновение", если двумерная поверхность обладает соответствующими свойствами), иллюстрирует сделанное утверждение.

 

1. Космические масштабы 

     Рассмотрение  современных естественнонаучных концепций  мы начнем с мегамира - той части  окружающего мира, которую можно  обнаружить, посмотрев ночью на небо. Что за светящиеся точки видны там на черном фоне (и почему, кстати, фон черный, а не голубой, как днем?)? Светящиеся точки на черном фоне - так называемые звезды - вот, собственно, все, что мы можем воспринять с помощью органов чувств. Где-то они распределены гуще, где-то реже. Большинство из них образуют устойчивые конфигурации - созвездия - час за часом двигающиеся по небу, некоторые - планеты - медленно, месяц за месяцем перемещаются относительно других. Можно ограничиться констатацией этого факта, можно путем продолжительных наблюдений попытаться найти закономерности видимых перемещений. Пожалуй, это все. Если не задавать вопросов, что это за объекты и почему они двигаются так, а не иначе.

     Первые  попытки объяснения ориентировались  на волю сверхъестественных существ - богов, управляющих движением небесных тел. Впоследствии сопоставление геометрических и временных координат небесных тел с судьбами людей привело к возникновению астрологии. Ни то, ни другое не является предметом естественнонаучного познания, в первом случае по определению, во втором - поскольку не отвечает на вопросы, «что» и «почему». К концу ХХ века сложились концепции, на основе которых мы не только сумели задать множество новых более конкретных вопросов и ответить на них, но и связать свои представления о мире небесных тел с природой явлений, наблюдаемых в лабораториях.

     Наше  уникальное дневное светило - Солнце - стало одной из звезд небосклона, его тепло и свет оказались  той же природы, что и едва заметный свет звезд, а их источник - ядерные  реакции - воспроизведен в земных условиях. Планеты, проявляя в своем движении законы механики, стали двигаться по орбитам вокруг центрального тела - Солнца - в соответствии с законом всемирного тяготения.

     Одной из проблем, в связи с которыми все это долгое время не было понято, явились космические масштабы. Если представить себе Солнце в виде шара диаметром 7 см, то ближайшая к нему планета (Меркурий) будет находиться на расстоянии 2,8 м, наша Земля - в виде шарика диаметром 0,5 мм будет на расстоянии 7,6 м, а самая дальняя планета Плутон - в 300 м от Солнца. Самая же близкая из других звезд - Проксима Центавра - расположится в 2000 км, что соответствует расстоянию от С-Петербурга до Сухуми. Неудивительно, что одинаковая природа Солнца и других звезд долгое время не была осознана. Временные масштабы, характерные для Вселенной, тоже не отстали. Если начать отсчет времени с так называемого Большого Взрыва - гипотетической ситуации, когда все вещество Вселенной находилось в одной единственной бесконечно малой точке, а потом начало разлетаться - и сопоставить ему 0 ч. 0 мин. первого января, а всю последующую историю развития Вселенной до настоящего времени уложить в один год, то Солнце образовалось только 9 сентября, Земля 14 сентября, бактерии появились 9 октября, первые клетки с ядром 15 ноября, динозавры 24 декабря, а первые люди только в 22 ч. 30 мин. 31 декабря. А ведь человек существует уже несколько миллионов лет. 

     2. Методы исследования

     Астрономические наблюдения ведутся в трех диапазонах электромагнитных волн: радио, оптическом и рентгеновском с разных точек земной орбиты. Зная ее диаметр и измеряя углы, под которыми видны те или иные светила, можно найти расстояния до них. Анализируя спектры излучения звезд, можно установить их химический состав, а кроме того, обнаружить так называемое красное (т.е. в сторону более длинных волн) смещение этих спектров на шкале частот относительно их обычного расположения. Э.Хаббл предположил, что красное смещение связано с тем, что звезды удаляются от нас (эффект Допплера), при этом оказалось, что чем дальше расположено от нас то или иное скопление звезд (галактика), тем больше сдвиг, тем быстрее все они двигаются от нас. Такое разбегание галактик говорит о том, что раньше все они были рядом. Измерение скорости позволяет найти время, когда именно они были рядом, и, таким образом, сделать приведенные оценки. 

     3. Распределение вещества  во Вселенной

     Хорошо  видимая на ночном небе полоса, густо  усеянная звездами, - Млечный путь - представляет собой "вид в профиль" нашей галактики, той к которой  принадлежит Солнце. Кроме Солнца, в нее входит еще порядка 150 миллиардов звезд. Галактика огромна, и, как видно из приведенного примера с Проксимой Центавра, межзвездные расстояния намного превосходят размеры самих звезд. Можно сказать, что звезды в галактике представляют собой чрезвычайно разреженный газ частиц. Но наша галактика не единственна. Существует множество других, столь же гигантских, образующих Метагалактику - всю наблюдаемую Вселенную. В свою очередь межгалактические расстояния сравнимы с размерами самих галактик, поэтому можно сказать, что, рассматривая галактики как частицы, мы имеем весьма вязкую среду.

     Э.Хаббл  предложил следующую классификацию  галактик:

     * эллиптические, сфероиды различной  сплюснутости, состоящие в основном  из старых звезд;

     * спиральные, в "рукавах" которых  находятся молодые звезды;

     * неправильной формы.

     Все они образовались из протооблаков межзвездного вещества, обладающих различными массами и различными моментами количества движения - характеристикой, показывающей, как двигались различные части облаков относительно друг друга. В центрах галактик находятся ядра - компактные скопления огромного количества звезд, выделяющих гигантские энергии во всех диапазонах длин волн.

     Пространство  между галактиками и между  звездами внутри галактик не пусто. В каждом кубическом сантиметре межзвездного пространства в среднем находится один атом вещества. Если атомов в каждом кубическом сантиметре наберется с десяток, то о такой области пространства говорят как об облаке. Оно может быть обнаружено с помощью радиотелескопов и хорошо заметно на окружающем фоне. Для сравнения напомним, что в воздухе, которым мы дышим, содержится порядка 1019 атомов в каждом кубическом сантиметре, а в самом лучшем вакууме, который может быть получен в земных лабораториях, в каждом кубическом сантиметре содержится 105 атомов.

     В 1963 году были обнаружены загадочные квазизвездные  объекты (квазары), представляющие собой  чрезвычайно компактные образования, размером со звезду, но излучающие, как  целая галактика. В их спектре на сплошном фоне излучения видны яркие линии, сильно смещенные в красную сторону, что говорит о том, что квазары удаляются от нас с огромной скоростью (и расположены очень далеко от нашей галактики).

     Однако, самым распространенным объектом во Вселенной являются звезды. Как ни странно, мы знаем о звездах больше, чем о Солнечной системе. Но она ведь у нас под рукой одна, а звезд - очень много. Сопоставляя данные для различных звезд, можно получить общие закономерности и проверить их выполнение на примерах других звезд. 

     4. Звезды и их  эволюция

     Сначала формируется протозвезда. Частицы гигантского движущегося газопылевого облака в некоторой области пространства притягиваются между собой за счет гравитационных сил. Происходит это очень медленно, ведь силы, пропорциональные массам входящих в облако атомов (в основном атомов водорода) и пылинок, чрезвычайно малы. Однако постепенно частицы сближаются, плотность облака нарастает, оно становится непрозрачным, образующийся сферический "ком" начинает понемногу вращаться, растет и сила притяжения, ведь теперь масса "кома" велика. Все больше и больше частиц захватывается, все больше плотность вещества. Внешние слои давят на внутренние, давление в глубине растет, а, значит, растет и температура. (Именно так обстоит дело с газами, которые были подробно изучены на Земле). Наконец, температура становится такой большой - несколько миллионов градусов, - что в ядре этого образующегося тела создаются условия для протекания ядерной реакции синтеза: водород начинает превращается в гелий. Об этом можно узнать, регистрируя потоки нейтрино - элементарных частиц, выделяющихся при такой реакции. Реакция сопровождается мощным потоком электромагнитного излучения, которое давит (силой светового давления, впервые измеренной в Земной лаборатории П.Лебедевым) на внешние слои вещества, противодействуя гравитационному сжатию. Наконец, сжатие прекращается, поскольку давления уравновешиваются, и протозвезда становится звездой. Чтобы пройти эту стадию своей эволюции протозвезде нужно несколько миллионов лет, если ее масса больше солнечной, и несколько сот миллионов лет, если ее масса меньше солнечной. Звезд, массы которых меньше солнечной в 10 раз, очень мало.

     Масса является одной из важных характеристик  звезд. Любопытно отметить, что довольно распространены двойные звезды - образующиеся вблизи друг друга и вращающиеся вокруг общего центра. Их насчитывается от 30 до 50 процентов от общего числа звезд. Возникновение двойных, вероятно, связано с распределением момента количества движения исходного облака. Если у такой пары образуется планетная система, то движение планет может быть довольно замысловатым, а условия на их поверхностях будут сильно изменяться в зависимости от расположения планеты на орбите по отношению к светилам. Весьма возможно, что стационарных орбит, вроде тех, что могут существовать в планетных системах одинарных звезд (и существуют в Солнечной системе), не окажется совсем. Обычные, одинарные звезды в процессе своего образования начинают вращаться вокруг своей оси.

     Другой  важной характеристикой является радиус звезды. Существуют звезды - белые карлики, радиус которых не превышает радиуса Земли, существуют и такие - красные гиганты, радиус которых достигает радиуса орбиты Марса. Химический состав звезд по спектроскопическим данным в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 атом углерода, остальных элементов еще меньше. Из-за высоких температур атомы ионизируются, так что вещество звезды является в основном водородно-гелиевой плазмой - в целом электрически нейтральной смесью ионов и электронов. В зависимости от массы и химического состава исходного облака образовавшаяся звезда попадает на тот или иной участок так называемой главной последовательности на диаграмме Герцшпрунга-Рессела. Последняя представляет собой координатную плоскость, на вертикальной оси которой откладывается светимость звезды (т.е. количество энергии, излучаемой ей в единицу времени), а на горизонтальной - ее спектральный класс (характеризующий цвет звезды, который в свою очередь зависит от температуры ее поверхности. При этом "синие" звезды более горячие, чем "красные", а наше "желтое" Солнце имеет промежуточную температуру поверхности порядка 6000 градусов). Традиционно спектральные классы от горячих к холодным обозначаются буквами O,B,A,F,G,K,M (последовательность легко запомнить с помощью мнемонического правила "O, Be A Fine Girl, Kiss Me"), при этом каждый класс делится на десять подклассов. Так, наше Солнце имеет спектральный класс G2. На диаграмме видно, что большинство звезд располагается вдоль плавной кривой, идущей из левого верхнего угла в правый нижний. Это и есть главная последовательность. Наше Солнце также находится на ней. По мере "выгорания" водорода в центре звезды ее масса немного меняется и звезда немного смещается вправо вдоль главной последовательности. Звезды с массами порядка солнечной находятся на главной последовательности 10-15 млрд. лет (наше Солнце находится на ней уже около 4,5 млрд. лет). Постепенно энергии в центре звезды выделяется все меньше, давление падает, ядро сжимается, и температура в нем возрастает. Ядерные реакции протекают теперь только в тонком слое на границе ядра внутри звезды. В результате звезда в целом начинает "разбухать", а ее светимость увеличиваться. Звезда сходит с главной последовательности и перебирается в правый верхний угол диагрaммы Герцшпрунга-Рессела, превращаясь в так называемый "красный гигант". После того, как температура сжимающегося (теперь уже гелиевого) ядра красного гиганта достигнет 100-150 млн. градусов, начинается новая ядерная реакция синтеза - превращение гелия в углерод. Когда и эта реакция исчерпает себя, происходит сброс оболочки - существенная часть массы звезды превращается в планетарную туманность. Горячие внутренние слои звезды оказываются "снаружи", и их излучение "раздувает" отделившуюся оболочку. Через несколько десятков тысяч лет оболочка рассеивается, и остается небольшая очень горячая плотная звезда. Медленно остывая, она переходит в левый нижний угол диаграммы и превращается в "белый карлик". Белые карлики, по-видимому, представляют собой заключительный этап нормальной эволюции большинства звезд. 

Информация о работе Происхождение и эволюция звезд и планет в Солнечной системе