Гравитационное поле Земли. Гравитационные процессы и явления

Автор работы: Пользователь скрыл имя, 04 Марта 2014 в 22:03, реферат

Описание работы

Гравитационное поле Земли — силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными.

Содержание работы

Введение.
Глава 1. Закон всемирного тяготения.
Глава 2. Сила тяжести и ее составляющие.
Глава 3. Нормальное гравитационное поле и его аномалии.
Глава 4. Гравитационные процессы и явления.
Заключение.
Список использованной литературы.

Файлы: 1 файл

gravitatsionnoe_pole.docx

— 136.99 Кб (Скачать файл)

МИНОБРНАУКИ РФ

ФГБОУ ВПО «Удмуртский государственный университет»

Институт Нефти и Газа им. М.С. Гуцериева

 

 

 

 

Реферат по дисциплине «Наука о Земле»

на тему «Гравитационное поле Земли. Гравитационные процессы и явления».

 

 

 

 

Выполнил :                                                                                       А.П. Шкляев

Студент гр. ОБ-131012-11

 

Проверил:                                                                                   С.А. Красноперова

Старший преподаватель ГНГ

 

 

 

 

 

 

Ижевск, 2013 год

Содержание.

Введение.

Глава 1. Закон всемирного тяготения.

Глава 2. Сила тяжести и ее составляющие.

Глава 3. Нормальное гравитационное поле и его аномалии.

Глава 4. Гравитационные процессы и явления.

Заключение.

Список использованной литературы.

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

    Гравитационное поле Земли — силовое поле, обусловленное притяжением масс Земли и центробежной силой, которая возникает вследствие суточного вращения Земли; незначительно зависит также от притяжения Луны и Солнца и других небесных тел и масс земной атмосферы. Гравитационное поле Земли характеризуется силой тяжести, потенциалом силы тяжести и различными его производными.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1. Закон всемирного тяготения.

 

    Под гравитационным полем Земли понимается поле силы тяжести (точнее, ускорения силы тяжести), которая определяется как равнодействующая двух основных сил: силы притяжения (тяготения) Земли и центробежной силы, вызванной ее суточным вращением. Величина силы тяжести на поверхности Земли зависит от широты места и распределения плотности внутри Земли. Вследствие этого знание гравитационного поля Земли позволяет находить ее фигуру и внутреннее строение. Гравитационное поле определяет также внешнюю баллистику Земли, что играет особо важную роль для космических полетов. Данные о гравитационном поле широко используются в гравиметрической разведке при глубинных исследованиях Земли, поиске и разведке различных полезных ископаемых (нефти, газа, различных руд), при инженерно-геологических изысканиях, астрономо-геофизических измерениях, для определения высот пунктов и т. д.

Согласно одному из основных законов физики – закону всемирного тяготения И. Ньютона все тела притягиваются друг к другу с силой, пропорциональной их массе и обратно пропорциональной квадрату расстояния между ними. Математически этот закон выражается формулой 
F=Gm1m2/r2 (1), где F – сила притяжения точечных масс друг к другу, Н; G – гравитационная постоянная, Нм2/кг2; m1 и m2 – взаимно притягивающиеся (гравитирующие) массы, кг; r – расстояние, по прямой между их центрами, м.

Величина гравитационной постоянной не зависит ни от химических, ни от физических свойств гравитирующих масс, ни от величины и направления скорости их движения, ни от свойств и степени заполнения среды, разделяющей эти массы, и определяется только выбранной системой единиц длины, массы и времени. Впервые гравитационную постоянную, определил Г. Кавендиш в 1798г. при помощи очень чувствительного прибора – крутильных весов. Примечательно, что при низких технических возможностях того времени Кавендиш получил результат, лишь на 1 % отличающийся от современного.

Первый точный эксперимент по проверке независимости гравитационной постоянной от свойств вещества выполнил в 1906– 1909 гг. венгерский физик Р. Этвеш. Как и Г. Кавендиш, он использовал крутильные весы с той лишь разницей, что в качестве притягивающихся масс экспериментировал с телами из разного материала – легкого и тяжелого, в том числе из древесины, меди, алюминия и др.

В настоящее время гравитационная постоянная определена с большой точностью. В системе СИ G=(6,6726± 0,0005)·10-11 Нм2/кг2. Она постоянна для Вселенной и является одной из фундаментальных констант физики. 

Современная физика исходит из постулата постоянства этой величины. Однако некоторые физики, в частности английский физик Дирак, считают, что она не постоянна. Из этого вытекает много интересных следствий для космологии, общей теории относительности, гравитационного поля и эволюции Земли. Так, медленное убывание со временем гравитационной постоянной и ускорения свободного падения рассматривают в геофизике как одну из причин возможного систематического расширения Земли в связи с расширением океанического дна и рождения литосферы в рифтовых зонах срединно-океанических хребтов. Естественно, что убывание G должно приводить к расширению и других гравитирующих земных объектов. Таким образом, между двумя любыми телами в природе всегда существует силовое взаимодействие, в результате которого происходит их взаимное притяжение. Физическое поле этого взаимодействия носит название поля тяготения, или гравитационного поля (от лат. gravitus – тяжесть). Изучением гравитационного поля Земли и планет занимается наука гравиметрия.

Началом гравиметрии по праву считаются опыты Г. Галилея (ок. 1590 г.) со свободно падающими телами (по преданию – с знаменитой Пизанской башни) и открытие И. Ньютоном закона всемирного тяготения (1687 г.). 

Большой вклад в развитие гравиметрии внес известный французский математик А. Клеро. В работе «Теория фигуры Земли, основанная на началах гидростатики», опубликованной в 1743 г., он указал на связь между сжатием и изменением силы тяжести от полюса к экватору. Дальнейшее развитие гравиметрии связано с трудами английского физика Дж. Г. Стокса, итальянского – П. Пицетти и советского геофизика – М. С. Молоденского.

Зависимость сил тяготения только от массы и расстояния, а не от внутреннего состояния тел определяют уникальный характер этих сил и выделяют их из всех других сил, встречающихся в природе. Так, силы тяготения беспрепятственно действуют и через свободное пространство, и через толщи вещества. Все силы, кроме силы тяготения, сообщают телу ускорение тем меньше, чем больше его масса (так называемая инерционная масса). Ускорение же, сообщаемое телу силами тяготения, не зависит от его массы. Иными словами, ускорение под действием притяжения в данной точке Земли одинаково для всех тел.

Из ньютоновского закона тяготения вытекает, что силы тяготения передаются от одного тела к другому мгновенно. Между тем согласно теории относительности любые взаимодействия передаются только с конечной скоростью, в данном случае – со скоростью света.

Теория гравитационного поля основана на общей теории относительности, сформулированной в 1916 г. А. Энштейном. В общей теории относительности силы тяготения не рассматриваются как обычные силы, они проявляются скрытым образом: тело, создающее поле тяготения, «искривляет» пространство вокруг себя и изменяет ход времени, а другие тела свободно движутся по инерции в «кривом» пространстве, что приводит к тому, что траектория их движения оказывается искривленной.

Механизм тяготения еще не совсем ясен. Некоторые исследователи пытаются объяснить гравитационное взаимодействие двух тел тем, что они обмениваются особыми частицами – квантами поля тяготения, или гравитонами, но каких-либо данных об этом нет. Основными измеряемыми параметрами (или элементами) гравитационного поля Земли является ускорение свободного падения (ускорение силы тяжести) и вторые производные потенциала силы тяжести. Значения этих параметров обусловлены в основном двумя причинами; во-первых, планетарными особенностями Земли (скорость вращения, масса, форма поверхности, внутреннее строение), создающими плавно изменяющееся поле, называемое нормальным; во-вторых, различием плотности горных пород и руд, связанным с плотностными неоднородностями среды, образующими аномальное поле силы тяжести.

Гравиметрия как наука стала развиваться с теории фигуры Земли, изложенной Ньютоном в третьей части «Математических начал натуральной философии». Сам Ньютон не мог непосредственно проверить свою теорию тяготения, так как для этого надо было измерить очень малые силы, действующие между двумя массами. Так, из формулы (1) следует, что две массы по 1 кг каждая на расстоянии 1 м притягиваются друг к другу с силой всего 6,6726·10-11 Н. Для измерения такой силы нужны очень чувствительные приборы. Однако Ньютон теоретически доказал, что под действием силы тяжести и центробежной силы Земля имеет фигуру эллипсоида вращения, т. е. она сплюснута у полюсов и растянута в экваториальной зоне. Он впервые вычислил полярное сжатие Земли: 
α=(а–b)/b, где а – экваториальный радиус, b – полярный радиус Земли. Правда, число, которое получил Ньютон (α =1/230), было еще недостаточно точным. Чтобы решить вопрос о фигуре Земли, Французская академия наук организовала в течение десятилетия (1735–1745 гг.) две экспедиции к различным широтам (в Перу и Лапландию). С помощью собранных материалов было доказано, что экваториальное вздутие существует, т. е. Земля не растянута, а сплюснута вдоль оси. Современное сжатие Земли, определенное с большой точностью на основе деформаций орбит искусственных спутников Земли, равно 1/(298,257±0,02). По данным спутниковых измерений доказано, что полярный радиус Земли на 21,380км меньше экваториального радиуса. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 2. Сила тяжести и ее составляющие.

     На любую материальную точку, находящуюся на поверхности или внутри Земли, действуют три силы: сила ньютоновского притяжения между точкой и всей массой Земли F, центробежная сила Р, возникающая вследствие суточного вращения Земли, и сила притяжения небесных тел F’.(рис. 1). Равнодействующая этих сил называется силой тяжести g. Как и всякая сила, сила тяжести g является векторной величиной. Она способствует удержанию тел и предметов на .поверхности Земли

Силу F определяют по зависимости (1). Из-за смены взаимного положения Земли и небесных тел ее числовое значение и направление непрерывно изменяются, что ведет к приливным изменениям g. Для исключения влияния F' в результаты измерений обычно вводят специальную поправку.

Сила ньютоновского притяжения F определяется распределением масс в теле Земли и ее формой. Если в первом приближении принять Землю за шар, состоящий из концентрических слоев постоянной плотности, то сила F будет направлена к центру Земли и подчиняться закону Ньютона 
F=GМmi/r2 (2), где М и mi – соответственно масса Земли и i-й точки; r – геоцентрическое расстояние,  (x, у и z – геоцентрические координаты).

Для реальной Земли с ее сложной формой и неоднородной по радиусу плотностью значение силы F отличается от значения вычисленного по формуле (2). Когда масса mi находится на земной поверхности, r .равно радиусу Земли R в данной точке.

Центробежная сила Р направлена вдоль радиуса, перпендикулярного оси вращения: 
P=mω2d, где ω=2π/86164 – угловая скорость вращения Земли, 86164 – среднее число секунд в звездных сутках; d – расстояние от оси вращения до притягиваемой точки.

Величина центробежной силы Р зависит от широты места и меняется от нуля на полюсе до максимума на экваторе. По сравнению с силой притяжения F центробежная сила Р мала и на экваторе составляет 1/288F. На полюсе, как сказано выше, она вообще равна нулю. Центробежная сила стремится уменьшить силу притяжения.

Если принять массу притягиваемой точки за единицу, то сила тяжести будет численно равна ускорению свободного падения g. Поэтому иногда вместо полного термина «ускорение свободного падения» или «ускорение силы тяжести» употребляют сокращенное выражение «силы тяжести». Единицей ускорения свободного падения является метр на секунду в квадрате (м/с2). В геофизике и в частности в гравиметрической практике используют более мелкие единицы – гал (1 Гал=10-2м/с2), миллигал (1 мГал= 10-5м/с2) и микрогал (1 мкГал=10-8м/с2). Свое название гал получил в честь Г. Галилея, впервые измерившего величину ускорения силы тяжести и открывшего закон свободного падения тел. Для решения большинства практических задач силу тяжести достаточно измерить с ошибкой 1–5 мГал, при определении опорных пунктов гравиметрической съемки ошибки допускаются не выше 0,1–0,2 мкГал, при изучении упругих свойств Земли–не более 1–2мкГал. 
                            

Рисунок 1. Сила тяжести и ее составляющие

Измерение ускорения свободного падения в месте хранения эталона массы (г. Севр, Франция) дало величину 9,80665 м/с2. Это значение стандартизовано как постоянная величина, не подлежащая изменению, независимо от уточнения измерений.

Величина стандартизированного ускорения свободного падения широко применяется в авиации и космонавтике.; Если тело движется с ускорением, которое в определенное, число раз превышает 9,80665 м/с2, то во столько же раз увеличивается вес тела. Поэтому это отношение получило, название перегрузки.

Среднее значение ускорения свободного падения на земной поверхности равно 9,81м/с2, наибольшее – на полюсе–9,8322 м/с2, (наименьшее – на экваторе – 9,7805 м/с2. Изменение ускорения от полюса к экватору объясняется тем, что экваториальный радиус Земли на 21км больше полярного, а чем больше радиус, тем меньше притяжение. Кроме того, на экваторе максимально центробежное ускорение, которое вычитается из ускорения притяжения.

Информация о работе Гравитационное поле Земли. Гравитационные процессы и явления