Совершенствование системы диагностирования топливной аппаратуры тепловозных дизелей

Автор работы: Пользователь скрыл имя, 27 Октября 2009 в 16:53, Не определен

Описание работы

На топливную аппаратуру приходится значительная доля отказов дизеля. Одним из наиболее ответственных узлов топливной системы является форсунка. Обычно отказ форсунки связан с разрегулировкой давления начала подъема иглы распылителя, закоксовыванием или размывом его распиливающих отверстий. Ухудшение качества распыливания во многих случаях является следствием изнашивания сопрягаемых поверхностей иглы и корпуса распылителя.

Файлы: 1 файл

1 Совершенствование системы диагностир. топлив. ап-ры тепловозных дизелей (10-48).doc

— 1.03 Мб (Скачать файл)

    1. СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ ДИАГНОСТИРОВАНИЯ ТОПЛИВНОЙ АППАРАТУРЫ ТЕПЛОВОЗНЫХ ДИЗЕЛЕЙ 

    1. Оценка  технического состояния топливной  аппаратуры
 

       На  топливную аппаратуру приходится значительная доля отказов дизеля. Одним из наиболее ответственных узлов топливной системы является форсунка. Обычно отказ форсунки связан с разрегулировкой давления начала подъема иглы распылителя, закоксовыванием или размывом его распиливающих отверстий. Ухудшение качества распыливания во многих случаях является следствием изнашивания сопрягаемых поверхностей иглы и корпуса распылителя.

       Обнаружение большинства неисправностей очень  затруднена, в связи с постепенным их возникновением, а также вследствие того, что их влияние на выходные показатели дизеля аналогично влиянию отказов в системах воздухоснабжения и газораспределения. Это является причиной дополнительных работ по разборке, проверке и осмотру узлов и деталей двигателя. Таким образом, применение методов и средств безразборного диагностирования топливной аппаратуры на работающем дизеле является актуальной задачей.

       В настоящее время применяется  несколько методов контроля технического состояния топливоподающих систем дизелей, различия которых заключаются в выборе групп диагностических параметров и выявлении формы их функциональных связей со структурными. Наиболее общим методом оценки технического состояния дизеля и его топливоподающей аппаратуры является диагностирование по основным показателям работы. К таким показателям относятся мощность, среднее эффективное давление, крутящий момент, расход топлива, КПД. Многие из этих показателей находятся в тесной корреляционной связи с неисправностями, нарушениями регулировок топливной аппаратуры и сопровождающими их процессами. Отклонение показателей от их исходных значений обусловливает необходимость проверки прежде всего системы топливоподачи (топливного насоса, форсунок).

       При парциальном методе диагностирования испытывают двигатель с частью выключенных цилиндров. Нагрузка работающих цилиндров обеспечивается частично вследствие прокручивания коленчатого вала тормозной установкой. Этим методом, кроме показателей двигателя в целом, можно оценивать мощностные и экономические показатели каждой группы работающих цилиндров, что увеличивает объем информации, получаемой при проверке двигателя [12].

       Дифференциальный метод позволяет определить отклонение основных показателей от номинального значения по отдельным цилиндрам. Нагружение работающего цилиндра или минимальной группы цилиндров осуществляют выключением других до тех пор, пока для вращения и вывода на номинальный скоростной режим не окажется необходимым подключение внешнего источника энергии. Обычно для этих целёй используют электродвигатель или навесной электропривод с динамометрическим устройством. При дифференциальном методе проверяемый цилиндр работает с полной цикловой подачей топлива на номинальном скоростном режиме, а с помощью электропривода определяют отклонение мощности от номинального значения.

       Различные варианты бестормозных методов проверки двигателя в условиях эксплуатации основаны на использовании в качестве нагрузки механических потерь самого двигателя в сочетании с выключением из работы части цилиндров и применением догрузочных устройств в качестве дополнительного сопротивления. Наиболее простой способ бестормозного нагружения, широко применяемый в практике, - это нагружение только выключением цилиндров. Разброс значений температур и давлений по цилиндрам служит критерием оценки состояния регулировочных параметров топливных насосов и форсунок. Таким образом, с помощью метода бестормозного нагружения возможно выявление дефектов топливной аппаратуры.

       В условиях эксплуатации дизели значительную часть времени работают на неустановившихся режимах. В связи с этим при анализе работоспособности дизеля и его отдельных узлов оценивают параметры двигателя при переходных процессах, так как испытания на установившихся режимах, по мнению ряда исследователей, не могут обеспечить требуемой информации. Приемлемыми критериями оценки переходных процессов при диагностировании топливной аппаратуры являются: резкое изменение цикловой подачи топлива и продолжительность переходного процесса; площадь под кривой переходного процесса; установившееся значение цикловой подачи топлива на новом равновесном режиме работы. Для такой оценки необходимо иметь закономерности эталонного переходного процесса двигателя, снятого при исправном исходном состоянии топливной аппаратуры, чтобы сравнивать его с переходным процессом, полученным при данном техническом состоянии аппаратуры [12]. 

    1.1.1. Общая оценка состояния топливной аппаратуры по параметрам рабочего процесса дизеля 

       Одним из методов диагностирования топливной аппаратуры является оценка по параметрам отработавших газов. Однако параметры отработавших газов являются функцией как топливной аппаратуры, так и технического состояния агрегатов наддува, цилиндропоршневой группы и других. В связи с этим только по параметрам отработавших газов трудно оценить состояние топливной аппаратуры.

       Регулировку топливной аппаратуры дизелей во многих случаях контролируют по максимальному давлению сгорания, температуре отработавших газов за каждым цилиндром и выходу рейки топливного насоса высокого давления. По этим же параметрам осуществляют и оценку ее технического состояния. Однако повышение температуры отработавших газов по мере эксплуатации дизеля неизбежно вследствие ухудшения

технического  состояния других узлов и агрегатов, в том числе цилиндропоршневой группы, газораспределительного механизма, системы воздухоснабжения и других. Таким образом, повышение температуры отработавших газов за каждым цилиндром, обусловливая необходимость поиска причины отказа, не позволяет его локализовать.

       Наиболее  полно состояние элементов конструкции, определяющих рабочий процесс, характеризуется двумя показателями - средним индикаторным давлением и индикаторным КПД.

       Происходящее  в процессе эксплуатации дизеля ухудшения  технического состояния приводит к  тому, что определенные на каком-либо фиксированном режиме, параметры и показатели двигателя имеют отличные от исходных значения. Общее снижение индикаторного КПД определяется как изменением состояния внешних по отношению к цилиндру систем, приводящих к отклонению параметров, так и ухудшением состояния топливной аппаратуры в целом.

         

       Рис. 1.1. Изменение индикаторного КПД дизеля в зависимости от состава смеси и наработки:

        - дизель в исходном состоянии;   - 2-й цилиндр;  · -

3-й цилиндр;   - после 1200 ч. работы;      - после 200 ч. работы 

       На  рис. 1.1. представлены закономерности изменения индикаторного КПД во втором и третьем цилиндрах дизеля 8ЧН 26/26 с учетом наработки. Через 200 ч после начала испытаний индикаторный КПД третьего цилиндра несущественно отличался от исходного значения (сплошная кривая). После 1200 ч работы это отличие составляло всего лишь 0,005. При значительном общем снижении индикаторного КПД равного 0,038 на долю топливной аппаратуры приходится очень незначительная часть (13 %)  этого изменения. Таким образом, ухудшение экономичности вызвано не топливной аппаратурой, а другими элементами конструкции двигателя.

       Для второго цилиндра характерно значительное ухудшение экономичности через 1200 ч работы (разность индикаторного КПД равна 0,051) при сравнительно малом изменении состава смеси. Как видно из   рис. 1.1., основная доля снижения индикаторного КПД приходится на топливную аппаратуру второго цилиндра (примерно 80 %), а остальная часть, обусловлена изменением режимных параметров вследствие изменения состояния других агрегатов дизеля.

       Приведенная методика и результаты ее опытной проверки позволяют заключить о возможности оценки состояния топливной аппаратуры предлагаемым способом. При заданном допустимом относительном отклонении индикаторного КПД  εηi доп достижение условия Δηi общ > εηi доп ηi исх определяет начало поиска отказа (см. рис. 1.1.). Однако, если при этом выполняется неравенство Δηi т.а. < εηi доп ηi пар то топливная аппаратура находится в удовлетворительном состоянии. Причина отказа вызвана другими агрегатами и системами (турбокомпрессор, охладитель наддувочного воздуха) или наступил такой момент, когда состояние каждого из влияющих агрегатов не вышло за допустимые пределы, но их суммарное влияние приводит к недопустимому ухудшению контролируемого технико-экономического показателя [6].

       Предлагаемый  способ имеет недостатки. Для осуществления такой оценки состояния топливной аппаратуры конкретных цилиндров необходимо знать величины: температуру газов и состав смеси для каждого из них. Оценить состав газов в i-м цилиндре сложно, особенно для дизелей с импульсной системой наддува при наличии продувки. В этом случае определяют состав газов, отобранных за каждым цилиндром в период чистого выпуска, в интервале времени, когда влияние соседних по работе цилиндров отсутствует. Неизбежность применения автоматических устройств при этом усложняет систему диагностирования.

       Рассмотрим  другой способ оценки состояния топливной  аппаратуры. Как показали исследования, при данном ее техническом 
состоянии относительные потери теплоты с уходящими газами 
в широком диапазоне нагрузок  практически неизменны. Это позволяет, зная величину относительных потерь теплоты с уходящими газами, заранее определить температуру газов за цилиндрами, соответствующую исходному техническому состоянию топливной аппаратуры.

       Ухудшение технического состояния топливной аппаратуры приводит к нарушению процессов топливоподачи, смесеобразования и сгорания и, как результат, к росту потерь теплоты с уходящими газами. Подтверждением этого является отличие измеренной температуры от расчетной при данном составе смеси. Выбор допустимой по состоянию аппаратуры температуры должен быть обусловлен таким изменением состояния, которое приводит к предельно допустимому ухудшению технико-экономических показателей. Например, если критерием для оценки выбрано допустимое снижение индикаторного КПД до 0,02, то оно вызывает практически такое же возрастание потерь теплоты с уходящими газами.

       Первоначальная  регулировка топливной аппаратуры исследуемых (второго и третьего) цилиндров обеспечила одинаковую температуру газов (в пределах погрешности измерения) и близкие значения состава смеси сравниваемых цилиндров. После 1200 ч работы дизеля температура газов на выходе из цилиндров превысила 873 К. Однако температура за третьим цилиндром была в допустимых пределах по состоянию топливной аппаратуры. Такое возрастание температуры объясняется уменьшением коэффициента избытка воздуха в этом цилиндре. Следовательно, поиск отказа должен быть локализован цилиндропоршневой группой и клапанным механизмом.

       

       

       Рис. 1.2. Зависимость температуры на выходе из цилиндра

       от  состава смеси:

1 – расчетная температура; 2 и  3 – номера цилиндров; I – поле погрешности измерения температуры газов;  - после 1200 ч. работы;      - после 200 ч. работы 

       Это подтверждается и различием изменения состава смеси в рассматриваемых цилиндрах. При последующем демонтаже двигателя подтвердились сделанные выводы – на поверхностях фасок выпускных клапанов третьего цилиндра были обнаружены прогары. Это привело к утечке заряда при сжатии и расширении.

       Во  втором цилиндре (как и во всех остальных) после 1000 ч работы дизеля произошло примерно одинаковое снижение состава смеси, что        явилось следствием ухудшения технического состояния турбокомпрессора. Однако превышение температуры газов предельно допустимого значения позволило сделать вывод об отказе именно топливной аппаратуры этого цилиндра. Демонтаж и анализ аппаратуры подтвердили этот вывод.

       Анализ  приведенных данных свидетельствует  о том, что температура газов за цилиндром является только информативным параметром, который в сочетании с параметрами состав смеси и температура смеси используется для формирования диагностического параметра.

       Проведенное исследование позволило проверить  разработанный локальный алгоритм диагностирования топливной аппаратуры. Необходимо отметить, что при такой постановке задачи диагностирования топливная аппаратура конкретного цилиндра рассматривается как единое устройство. Дальнейшая детализация может быть осуществлена при использовании других принципов, позволяющих локализовать отказ на более глубоком уровне (форсунки, насоса высокого давления) [6]. 

    1.1.2. Методы оценки состояния отдельных элементов

    топливной аппаратуры 

       Исследователями предложен метод оценки технического состояния топливной аппаратуры по показателям рабочего процесса. На основании проведенного анализа параметров рабочего процесса с применением метода графов, учета информативности параметров, разработки моделей процессов в дизеле получена конечная минимальная совокупность диагностических параметров: среднее индикаторное давление (по двигателю в целом); максимальное давление сгорания (среднее по двигателю в целом); температура отработавших газов (средняя по двигателю в целом). Целью анализа этих параметров является предварительное определение, состояния двигателя.

Информация о работе Совершенствование системы диагностирования топливной аппаратуры тепловозных дизелей