Регулирование тяги с высоким использованием сил сцепления на поездах.

Автор работы: Пользователь скрыл имя, 24 Января 2011 в 01:24, контрольная работа

Описание работы

Анализ электромеханической системы

Файлы: 1 файл

Журнал-Железные дороги.docx

— 95.32 Кб (Скачать файл)

     Новым в рассматриваемом методе является также применение производной по времени  для формирования верхней точки переключения Pmax (см. рис. 2). В соответствии с характеристикой при увеличении разности скоростей Dv темп увеличения силы тяги и соответственно момента Мsoll должен непрерывно снижаться. Это значит, что в точке максимума сцепления производная момента Мsoll будет равна нулю, если пренебречь ускорением вращающихся масс, т. е. принять, что боксования не будет. С помощью величины Pmax может задаваться минимальный темп увеличения вращающего момента, при этом amin < asoll < amax. Таким образом, назначение логики системы слежения состоит в том, чтобы обеспечивалось условие: проскальзывание колес или увеличение разности скоростей Dv может быть допущено лишь в том случае, если это оправдано необходимостью увеличения силы тяги.

     Помимо  этого планируется в системе  режимного регулирования задавать параметры Pmax и Pmin через так называемый показатель использования сцепления с учетом износа (AG). С его помощью система определяет приоритетность повышения степени использования сил сцепления или предотвращения повышенного проскальзывания колес. Если задать AG = 100 %, это приведет к режиму тяги на пределе сцепления с относительно высоким проскальзыванием колес. В нормальной эксплуатации показатель AG должен быть значительно ниже. Тем самым будет обеспечено снижение износа колес, а значит, и затрат на техническое обслуживание, и капиталовложений за счет увеличения срока службы всех элементов тягового тракта.

     Стенд для моделирования                                              регулирующих систем тягового привода

     Для испытаний и оптимизации новых  систем регулирования тягового привода  существует несколько возможностей:

     цифровое  моделирование всей системы тягового привода;

     проверка  аппаратного и программного обеспечения  путем аналогового или цифрового  моделирования испытательных участков в реальном времени;

     использование испытательных стендов и полигонов;

     испытания отдельных компонентов или единиц подвижного состава в целом на катковых или нагрузочных стендах;

     опытные поездки на линии.

     В Институте электротехники разработан новый метод, основанный на использовании  стенда, на котором масштабно моделируется динамика всего механического тракта в системе тягового привода электровоза  серии 120. Как уже сказано, тракт  тягового привода мощного электровоза  может быть смоделирован как колебательная  система из трех масс. Структура  стенда основана на этом принципе, причем здесь могут быть реализованы  собственные частоты крутильных колебаний 20 и 50 Гц. Для повышения  точности моделирования и сравнимости  результатов задаваемые на стенде параметры, а именно угол скручивания, частота вращения и угловые ускорения, принимаются такими же, как на локомотиве. В связи с этим одноступенчатый редуктор с цилиндрическими шестернями и таким же, как на локомотиве, передаточным числом, равным 5,067, является важнейшей составной частью стенда.

     Динамика  стенда должна отвечать всем требованиям, которые вытекают из закона подобия, применяемого в механике. Это достигается  тем, что моменты инерции, жесткость  пружин, константы гашения колебаний  и внешние моменты, действующие  на локомотиве, должны быть уменьшены  на стенде в одном масштабе. В данном случае используемое оборудование стенда определило масштаб уменьшения параметров 1:100. Колебательная система, состоящая из электрической машины, моделирующей тяговый двигатель, и двух нагрузочных трехфазных машин, соединенных валом и моделирующих два колеса моторной оси, на стенде дополнена электромагнитными моделями двух контактов колесо - рельс. Эти модели воздействуют на поле в магнитном зазоре одной из нагрузочных электрических машин. Рассматриваемый стенд отличается от всех других тем, что здесь используется упомянутый закон механики о подобии.

     В основу стенда положено исследование тяговых приводов с индивидуальным регулированием осей. На нем могут  испытываться и сравниваться следующие  концепции регулирования:

     комплексное регулирование силы сцепления;

     различные логические схемы слежения;

     методы  регулирования частоты вращения;

     режимное  регулирование с активным подавлением  колебаний;

     расчет  и оценка механических режимных параметров;

     определение срока службы компонентов тягового привода.

     Системы регулирования тягового привода  исследуются с помощью устройства ASG, являющегося оригинальной разработкой.

     Преимущество  стендовых испытаний перед натурными  заключается в том, что стенд  приспособлен для исследования экстремальных  динамических нагрузок и оборудован защитными муфтами. Благодаря этому  возможны испытания с рабочими точками, расположенными на неустойчивых участках характеристики сцепления, и новыми системами регулирования. При этом отсутствуют ограничения, связанные  с опасностью повреждения компонентов  тягового тракта.

     Другое  преимущество заключается в том, что при испытаниях воспроизводимы все режимы.

     Концепцией  стенда, основу которого составляют три  электрические машины, определяется число масс в модели колебательной  системы, равное трем.

     Тяговый привод стенда состоит из асинхронного двигателя мощностью 18,5 кВт с  короткозамкнутым ротором и преобразователя  с промежуточным звеном постоянного  напряжения мощностью 25 кВ·А. Постоянная времени регулирования частоты  вращения равна 5 мс. Номинальные режимы стенда в соответствии с масштабом  уменьшения 1:100 следующие: мощность 14 кВт, вращающий момент 75 Нм, момент при  трогании 105 Нм. Параметрами стенда они обеспечиваются с большим  запасом.

     Обе нагрузочные машины мощностью по 30 кВт моделируют инерцию масс двух колес моторной оси. С помощью  собственных преобразователей в  них формируются нагрузочные  моменты на базе электромагнитных моделей  контакта колесо - рельс. Нагрузочные  машины и их преобразователи имеют  достаточную мощность для моделирования  любых режимов. Так, каждый из нагрузочных  приводов в состоянии противостоять  вращающему моменту, передаваемому  редуктором от тягового двигателя, что  соответствует полной разгрузке  колеса. Динамика их вращающего момента  такова, что позволяет оптимально моделировать характеристику сцепления.

     Модель  контакта колесо - рельс упрощенно  можно охарактеризовать как модель поезда в сочетании с характеристикой  сцепления. В модели поезда сила тяги, которая пропорциональна нагружающему моменту, интегрируется по скорости, причем масса поезда является постоянной интегрирования.

     Еще одним преимуществом стенда перед  измерительными поездками локомотива является простота подключения измерительных  датчиков в тракте тягового привода. Так, каждая из трех вращающихся масс стенда оснащена оптическим датчиком приращений частоты вращения. Между  этими вращающимися массами находятся  два вала, изготовленные с высокой  точностью и предназначенные  для измерения вращающего момента. С их помощью измеряются вращающие моменты полого вала М12 и оси колесной пары М23. Благодаря этому возможно изучение динамики колебательной системы. Однако пока в соответствии с концепцией эти измеряемые величины не используются в качестве входных величин устройства, регулирующего частоту вращения тягового двигателя, а служат лишь для проверки точности расчетных величин.

     Точное  моделирование тягового тракта по результатам  его расчета и техническим  характеристикам, гарантированным  изготовителем, приводит к модели колебательной  системы из 19 масс. Упрощение модели на базе имеющихся научных разработок в области сокращения до минимума числа дискретных колебательных  компонентов в сложных колебательных  системах позволяет получить модель с тремя или двумя массами. Если сравнить распределение собственных  форм этих двух систем с моделью  реального тягового тракта, состоящей  из трех масс, можно обнаружить достаточно точное совпадение в отношении собственных  колебательных форм. Оказывается, что  вторая собственная форма соответствует  частоте 20 Гц, а ее гашение имеет  ту же величину, что и в реальном тяговом приводе. Третья собственная  форма 50 Гц имеет в модели большее  гашение, чем в оригинале. Это  объясняется тем, что в системах меньшей мощности степень гашения  выше.  
 

     Результаты  стендовых испытаний

     На  рис. 6 показано поведение тягового привода при использовании нового режимного (а) и обычного (б) изодромных регуляторов при изменении условий тяги.

     
     Рис. 6. Действие системы  режимного регулирования (а) в сравнении  с обычной изодромной системой (б) при изменении нагрузки

     В обоих случаях в момент времени  t = 0,2 c на второй нагрузочной машине (колесо с непрямым приводом) реализовано скачкообразное увеличение нагрузочного момента с 50 до 150 Нм. Для анализа состояния использованы значения частоты вращения тягового двигателя w1, задаваемого значения частоты вращения wsoll, а также расчетное и измеренное значения момента полого вала соответственно М12r и М12. Полученные результаты показали, что обычный изодромный регулятор не смог погасить крутильные колебания в модели полого вала с частотой 20 Гц, а в случае использования режимного регулятора эти колебания оказались погашенными. В системе с режимным регулятором снижение частоты вращения, а также время возврата в нормальный режим значительно меньше, а диапазон регулирования в 7 раз больше, чем с обычным изодромным.

     В то же время система расчета момента  на полом валу в обоих случаях  была достаточно точной, что было видно  из сравнения моментов М12 r и М12.

     На  рис. 7 показана работа стенда с обычным  изодромным регулятором без активного гашения колебаний. В тяговом режиме при скорости поезда 10 м/с и 90 % задаваемого значения вращающего момента в момент времени t = 0,2 c коэффициент сцепления скачкообразно падает со 100 до 60 %.

     
     Рис. 7. Действие обычной  изодромной системы регулирования при изменении условий сцепления: vu - окружная скорость колеса; fx - коэффициент сцепления в продольном направлении; msoll - приведенный задаваемый момент, используемый при формировании модели силы сцепления; m12, m23 - приведенные моменты полого вала и оси колесной пары

     Как известно из практики, возникают интенсивные  колебания моментов М12 и М23. Действующая  сила сцепления слишком мала для  того, чтобы вернуть тяговый тракт  на устойчивый участок характеристики сцепления. В результате возникает  боксование, что видно по увеличению разности скоростей Dv. В результате последующего увеличения коэффициента сцепления вновь возникают значительные колебания моментов М12 и М23. Помимо собственных форм с частотами 20 и 50 Гц отчетливо видна затухающая частота 5 Гц. Она генерируется регулирующей цепью при моделировании на стенде коэффициента сцепления.

     На  рис. 8 приведены результаты моделирования  процесса трогания с использованием современной (режимной) концепции регулирования.

     
     Рис. 8. Действие системы  режимного регулирования при  трогании поезда: vZug - скорость поезда

     Задаваемое  значение силы тяги принято максимальным, равным 300 кН. Из кривой изменения разности скоростей Dv видно, что в среднем она остается равной 0,75 м/с, то есть значительно ниже величины 1 м/с, соответствующей максимуму сцепления. Это значит, что рабочая точка находится на устойчивом участке характеристики. Частота, с которой логика слежения в процессе регулирования оказывает управляющее воздействие на параметры, составляет 0,7 Гц. Несмотря на это, увеличение скорости поезда происходит равномерно, почти линейно, что объясняется его большой массой. Величины Dv и vZug определяются нагрузочной компонентой моделей поезда и контакта колесо - рельс. В кривой изменения момента полого вала М12, как и ожидали исследователи, влияния колебаний первой собственной формы не было обнаружено. Рассмотренные результаты показали, что новая система регулирования с активным гашением колебаний достаточно эффективна.

     Перспективы

     Работы  по данной теме будут продолжены с  целью совершенствования блока  расчета в модели путем введения предварительной обработки характеристик  и/или включения в него фильтра  Кальмана для обработки входных  нагрузочных функций, имеющих стохастический характер. По окончании стендовых  исследований планируется проверка результатов моделирования на электровозе  высокой мощности.

Информация о работе Регулирование тяги с высоким использованием сил сцепления на поездах.