Автор работы: Пользователь скрыл имя, 08 Июня 2015 в 07:46, дипломная работа
ВАЗ-2106 («Жигули-1600»/«Lada-1600») — советский и российский заднеприводный автомобиль III группы малого класса с кузовом типа седан, являющийся модернизацией ВАЗ-2103 и выпускавшийся Волжским автомобильным заводом с 1975 по 2005 год. В 1998 году производство было частично перенесено на предприятие «Рослада» в Сызрани, в 2001 году на Анто-Рус в Херсоне, на Украине, а в 2002 году — на завод «ИжАвто» в Ижевске, где и продолжалось вплоть до снятия модели с конвейера 28 декабря 2005 года. Один из самых массовых и популярных отечественных автомобилей — всего произведено и собрано на разных заводах свыше 4,3 млн шт.
6. Шероховатость
рабочих поверхностей и
7. Базовые поверхности при
8. Характер износа детали – неравномерный.
9. Характер нагрузок – ударные, вибрационные, термические.
10. Характер деформаций –
Блок цилиндров |
_______ |
_______ |
_______ |
Обозначение и наименование изделия, составной части |
№ позиции |
№ Эскиза |
№ Карты |
№ |
Возможный дефект |
Метод установления дефекта |
Средство измерения |
Заключение и рекомендуемые методы |
Требования после ремонта |
1 |
Трещины в рубашке охлаждения |
Осмотр. Проверка под давлением 3,5-4 кг/см2 |
- |
1. Замена 2. Ремонт - заварить |
- |
2 |
Трещины между окнами рубашки охлаждения |
Осмотр |
- |
Ремонт - заварить |
- |
3 |
Трещины между резьбовыми отверстиями и окнами рубашки |
Осмотр |
- |
1. Замена 2. Ремонт - установить ввёртыш |
- |
4 |
Коррозия технологической заглушки |
Осмотр |
- |
Замена |
- |
5 |
Трещины на стенках цилиндров |
Осмотр, проверка под давлением 3,5-4 кг/см2 |
- |
Замена |
- |
6 |
Коробление плоскости сопряжения с головкой цилиндров |
Измерение |
Линейка, щуп |
Ремонт -шлифовка |
Не плоскостность не более 0,05 мм по всей длине |
7 |
Износ или несоосность отверстий гнёзд под вкладыши коренных подшипников |
Измерение |
Нутромер, индикаторный 50-100 |
Ремонт - фрезеровать крышки и расточить их до исходного размера |
Несоосность отверстий не более 0,025 мм |
8 |
Износ посадочных отверстий под полукольца |
Осмотр, измерение |
Микрометр |
Ремонт - наплавка |
Номинальный размер 15,97 мм, биение 0,02 мм не более |
9 |
Износ и задиры на поверхности цилиндров |
Осмотр, измерение |
Нутромер индикаторный 50-100 |
Ремонт - расточить до ремонтного размера |
Конусность и овальность цилиндров 0,02 мм не более |
10 |
Износ резьбовых отверстий |
Осмотр |
- |
Ремонт - установить ввёртыш - нарезать резьбу ремонтного размера |
- |
Анализ вариантов ремонта детали агрегата
Практика показывает, что от того, как отремонтирована поверхность цилиндров, напрямую зависит, сколько проживет двигатель после ремонта. И любая ошибка здесь ведет к весьма неприятным последствиям. По меньшей мере - к многократному снижению ресурса.
Во многих ремонтных мастерских блоки ремонтируют так же, как и 20-30 лет назад. По старинке. Точнее, как «бог на душу положит» . Самый простой и дешевый вариант получается такой: «бросить» блок на стол расточного станка, быстро «прокатать» индикатором, закрепленным на шпинделе, по верхней части цилиндра, чтобы попасть в его ось, и расточить цилиндр практически в нужный ремонтный размер. Далее чем-нибудь подручным загладить поверхность, да как можно лучше, чтобы «зеркало» было.
Что же нарушено в такой, казалось бы, традиционной «технологии» ? Да практически все мыслимые и немыслимые требования к ремонту блоков! Начнем с самого первого этапа - базирования блока на расточном станке. Как мы уже отмечали, нижняя плоскость блока в процессе эксплуатации тоже деформируется. Раз так, цилиндрам такая «плоскость» неперпендикулярна, а опорам коленчатого вала непараллельна. А тогда она не может быть так «запросто» взята за базу для обработки цилиндров!
Теперь о самой расточке. При растачивании добиться идеальной геометрии цилиндра трудно. Обычно получаются «эллипс» и «конус» до 0,02-0,05 мм. Что совершенно естественно - неравномерный по окружности цилиндра припуск из-за несовпадения осей «нового» и «старого» цилиндров, большая длина цилиндра приводят к отжиму резца от обрабатываемой поверхности.
Эти дефекты должны в обязательном порядке исправляться. Причем так, чтобы все отклонения от цилиндричности не превышали 0,005-0,010 мм. Но чем исправлять? К сожалению, применяемые во многих мастерских отечественные хонинговальные станки, оснащенные головками с гидравлическим или пружинным разжимом брусков, для этого малопригодны - «конус» при соответствующей сноровке еще как-то можно поправить, а «эллипс» вряд ли. В таком цилиндре даже самое лучшее поршневое кольцо будет иметь «просветы» - участки, где оно не соприкасается с поверхностью цилиндра. И износ деталей ускорится многократно.
Стремление сделать поверхность цилиндра максимально «чистой» на деле может снизить ресурс двигателя не меньше, чем «кривой» цилиндр. Почему это происходит, мы подробно расскажем ниже, но отметим, что гидравлический привод брусков на разжим создает неоправданно большое давление на стенки, резко ухудшая структуру поверхности, хотя смотреться такая поверхность может красивым блестящим «зеркалом» . А наждачная бумага, намотанная на оправку? Это изобретение советских времен по-прежнему продолжает уродовать моторы от Смоленска до Владивостока.
Как избежать ошибок
Итак, требуется отремонтировать цилиндры, увеличив их диаметр до соответствующего новым поршням ремонтного размера. Стоп... Первый вопрос - может быть и не совсем по теме, но достаточно актуальный: надо ли вообще у конкретного блока увеличивать цилиндры до ремонтного размера? А если износ всего 0,02-0,03 мм? Ведь во многих ремонтных пособиях указано, что предельный износ цилиндров, при котором их требуется растачивать в ремонтный размер, по крайней мере в 4-5 раз больше. Если износ мал, то вполне допустимо только поправить геометрию цилиндров хонингованием, увеличив их диаметр всего на 0,01-0,02 мм, чтобы затем установить туда новые поршни того же размера, но другой размерной группы.
Но, допустим, износ велик, и увеличение диаметра неизбежно. В таком случае цилиндры необходимо растачивать. И при этом правильно базировать блок на станке.
Идеальный случай, когда базой служит ось коренных подшипников. Тогда перпендикулярность цилиндров оси коленвала, - а именно этот параметр оказывается одним из самых важных для обеспечения высокого ресурса, - будет обеспечена. К сожалению, подобный способ базирования на практике оборачивается большими техническими проблемами: чтобы обрабатывать блоки различных двигателей требуются и специальные приспособления для каждого типа блоков.
Как тогда быть? Одно из компромиссных решений можно найти, исходя, к примеру, из такого требования: не изменять расположение поверхностей цилиндров, чтобы не сделать хуже. Это значит, что «новый» цилиндр должен быть обработан соосно «старому».
Можно вообще отказаться от предварительной расточки и, соответственно, всех проблем, связанных с базированием блока на станке. Правда, только в случае, если ремонтный размер не превышает 0,4-0,5 мм, а блок не имеет значительных заводских отклонений или эксплуатационных повреждений (в том числе трещин, пробоин и других дефектов после обрыва шатунов и разрушения поршней, следов перегрева коренных подшипников, сварочных работ и т.п.). Для этого существуют специализированные хонинговальные станки иностранного производства, уже получившие признание и в России. Их «изюминкой» является хонинговальная головка с жесткой подачей абразивных брусков на разжим.
Но не только это важно. Как мы уже отметили, при растачивании на поверхности цилиндра образуется дефектный слой - замятые и дробленые зерна чугуна. Глубина этого слоя в зависимости от режимов резания, заточки резца, химического состава и структуры чугуна может достигать 0,05-0,1 мм. Дефектный слой не обладает высокой механической прочностью и способен выкрашиваться под нагрузкой. Замятые зерна чугуна препятствуют выходу на поверхность свободного графита, содержащегося в чугуне. Значит, трение (а это и износ!) колец о стенку цилиндра станет больше. Если еще учесть, что замятые зерна не дают практически никаких пор на поверхности, то она, заглаженная до зеркального блеска, неспособна более удержать масло. И ресурс двигателя после такого ремонта станет раз в десять меньше реального.
Какой должна быть поверхность цилиндра
Геометрия - это понятно, а вот как добиться, чтобы на ней удерживалось масло, причем в строго определенных количествах? Ясно, что когда масла на поверхности недостаточно, будет быстрый износ. А если много? Тоже плохо: повысится расход (угар) масла. Да и сама поверхность цилиндра - ведь она работает на трение в паре с кольцами и поршнем, значит, должна быть гладкой. А как тогда быть с маслом, если оно лучше держится именно на шероховатой поверхности?
Эти весьма противоречивые требования удается одновременно выполнить только с помощью специального микропрофиля поверхности.
Не менее важен угол хонингования, т.е. угол между рисками, образованными при движении хона вниз и вверх. Слишком малый угол не позволяет добиться необходимого профиля поверхности и дает возрастание трения и износа, а большой угол, напротив, повышает расход масла.
Однако после этой операции поверхность еще далека от идеала - она имеет слишком много острых выступов. И если двигатель собрать после такой обработки, будет наблюдаться сильный износ деталей до тех пор, пока выступы не загладятся.
Именно так обычно и происходит после традиционного хонингования. А что, если загладить выступы сразу? Ведь это позволит заметно уменьшить износ цилиндров, колец и поршней в период первоначальной приработки. Все, что для этого нужно - дополнительно обработать цилиндры мелкозернистыми брусками, сделав всего 5-15 двойных ходов хонголовки.
В заключение отметим, что идеальная поверхность цилиндра, полученная по всем правилам, еще не гарантирует, что двигатель будет работать долго.
Капитальный ремонт двигателя - тема для нашего журнала традиционная. В прошлых публикациях мы уже рассказывали о ремонте головок блока цилиндров и коленчатых валов. Сегодня речь пойдет о блоке цилиндров и тех его основных дефектах, о которых нужно знать, прежде чем начинать ремонт.
Блок цилиндров, без сомнения, можно назвать основой любого двигателя. К нему крепятся головка блока, агрегаты, коробка передач, а внутри расположены поршневая группа и кривошипно-шатунный механизм. Очевидно, каждый из этих узлов испытывает нагрузки, а, значит, на блок действуют большие силы, переменные по величине и направлению. И, чтобы противостоять им, блок должен быть достаточно жестким, т.е. не деформироваться под действием этих сил.
Однако требование высокой жесткости вступает в противоречие с необходимостью снизить до минимума массу. Это вполне понятно - чем толще стенки блока, тем он жестче, но и тяжелее. А тяжелый блок - это не только тяжелый автомобиль: материалы, из которых изготавливается блок цилиндров, будь то специальный чугун или алюминиевый сплав, нельзя назвать дешевыми. И даже небольшой выигрыш по весу, к примеру, 100 г, в массовом производстве с его миллионными «тиражами» может дать экономию в сотни и тысячи тонн металла.
С другой стороны, работающий двигатель - основной источник шума в автомобиле. Так вот, еще одна задача блока цилиндров - не только не усилить, а, наоборот, поглотить, свести до минимума все моторные шумы. Эта задача - тоже не из простых: ведь тонкие стенки блока сами могут вибрировать, становясь при этом источником шума.
Естественно, выполнить все перечисленные требования одновременно очень непросто, но для современного автомобиля это необходимо. А потому блок цилиндров - это не кусок чугуна, как ошибочно полагают некоторые, а сложная и дорогостоящая деталь, при проектировании которой используются компьютеры и точные математические методы расчетов.
Какие бывают блоки
Традиционным материалом для блоков цилиндров издавна считается специальный чугун, содержащий так называемый пластинчатый графит. Именно такая структура обеспечивает высокую износостойкость поверхности цилиндров, выполненных как одно целое внутри блока (моноблок).
Такая конструкция применяется на легковых автомобилях уже более полувека и продолжает оставаться наиболее распространенной и в наши дни, несмотря на существенный недостаток моноблока - большую массу. Дело в том, что если попытаться увеличить долговечность цилиндров, использовав более износостойкий материал, то стоимость блока сразу заметно возрастет (не будем забывать, что любое удорожание единицы продукции в массовом производстве надо сразу умножить на программу ее выпуска - тогда, к примеру, один лишний доллар обернется миллионами дополнительных затрат).
Но износостойкость для блока важна не в каждой точке, а только в узком поясе вокруг каждого цилиндра. Вот почему в разные годы конструкторы пытались улучшить указанные свойства блоков цилиндров. Так, в 50-60-х годах появились алюминиевые блоки цилиндров со вставными («мокрыми», т.е. омываемыми снаружи охлаждающей жидкостью) гильзами из чугуна. Эта конструкция была заимствована из авиации, где требования к снижению массы моторов, пожалуй, самые жесткие. Так, кстати, были сконструированы блоки у наших «москвичей» и «волг».
В 70-х годах эта конструкция получила дальнейшее развитие: вместо «мокрых» гильз стали применять заливку их в алюминиевый блок на стадии его изготовления. Такие гильзы получили название «сухих» (одной из первых конструкцию с «сухими» гильзами применила фирма Honda). Тем самым удалось совместить преимущество моноблока (высокая жесткость) с низкой массой конструкции и высокой износостойкостью цилиндров.
Не остались без изменения и традиционные чугунные блоки у некоторых моторов. Так, на дизельных двигателях, где при высоких нагрузках износостойкость цилиндров особенно важна, в чугунные блоки стали устанавливать «сухие» гильзы из специальных дорогостоящих чугунов.