Газовая промышленность

Автор работы: Пользователь скрыл имя, 19 Апреля 2016 в 15:54, реферат

Описание работы

Газовая промышленность является одной из важнейших составных частей топливно-энергетического комплекса России. Поставка газа потребителю – задача существующей Единой системы газоснабжения (ЕСГ) страны.
ООО «Газпром» предусматривает в некоторых регионах параллельную прокладку нескольких ниток магистральных газопроводов и, как следствие этого, сооружение много цеховых газокомпрессорных станций.

Файлы: 1 файл

Документ Microsoft Office Word.docx

— 24.31 Кб (Скачать файл)

Введение

 

Газовая промышленность является одной из важнейших составных частей топливно-энергетического комплекса России. Поставка газа потребителю – задача существующей Единой системы газоснабжения (ЕСГ) страны.

ООО «Газпром» предусматривает в некоторых регионах параллельную прокладку нескольких ниток магистральных газопроводов и, как следствие этого, сооружение много цеховых газокомпрессорных станций.

Система магистрального многониточного газопровода Пунга-Ухта-Торжок, проходящая по территории Республики Коми, не только позволяет полностью обеспечивать республику газом, но и дает дополнительный приток природного газа в центральную часть России [1].

 

2 Теоретическая часть

 

2.1 Магистральный трубопровод

 

Магистральными называют трубопроводы, по которым нефть, нефтепродукты, природные или искусственные газы (в газообразном или сжиженном состоянии), вода перекачиваются от мест добычи, переработки, забора (начальная точка трубопровода) к местам потребления (конечная точка). Начальная и конечная точки трубопровода обычно находятся в местах, где сосредоточены основные источники получения транспортируемого продукта (начальная) и потребители его (конечная точка).

Магистральный газопровод в общем случае включает следующие группы сооружений: головные, линейные (собственно газопровод), компрессорные станции (КС), газораспределительные станции (ГРС) в конце трубопровода, подземные хранилища газа (ПХГ), объекты связи (высокочастотной и селекторной), системы электрозащиты сооружений трубопровода от коррозии, вспомогательные сооружения, обеспечивающие бесперебойную работу газопровода (линии электропередач, водозаборные устройства и водопроводы, канализация и т. п.), объекты ремонтно-эксплуатационной службы (РЭП), административные и жилищно-бытовые сооружения.

Головными называют сооружения, на которых подготавливают газ к дальнему транспорту. Комплекс головных сооружений (ГС) зависит от состава и давления газа, добываемого на промысле и поступающего на газосборный пункт. Как правило, в комплекс ГС входят установки по очистке газа от механических примесей, влаги, установки отделения от газа серы и высокоценных компонентов (гелия и др.). К головным сооружениям относятся и КС в начальной точке   газопровода, на территории которой обычно размещается комплект перечисленных сооружений. Газ, попадающий на головные сооружения магистрального газопровода со сборных пунктов промысла, содержит механические примеси (песок, пыль, металлическую окалину и др.) и жидкости (пластовую воду, конденсат, масло). Перед подачей в газопровод его очищают и осушают, так как без предварительной подготовки он будет засорять трубопровод,  вызывать преждевременный износ запорной и регулирующей арматуры, нарушать работу контрольно -  измерительных приборов. Твердые частицы, попадая в компрессорные установки, ускоряют износ поршневых колец, клапанов и цилиндров. В центробежных нагнетателях они ускоряют износ рабочих колес и самого корпуса нагнетателя. Жидкие примеси, скапливаясь в пониженных местах газопровода, будут сужать его сечение, способствовать образованию гидратных и гидравлических пробок [2].

Для очистки газа от механических примесей используют горизонтальные и вертикальные сепараторы, цилиндрические масляные и циклонные пылеуловители. В сепараторах отделяется примесь от газа. По принципу действия сепараторы делятся на объемные (гравитационные) и циклонные. В гравитационных аппаратах примеси оседают вследствие резкого изменения направления потока газа при одновременном уменьшении скорости его движения. В циклонных установках используются центробежные силы инерции, возникающие в камере при входе газа по тангенциальному вводу.

Масляные цилиндрические пылеуловители представляют собой вертикальные цилиндрические сосуды со сферическими днищами. На головных сооружениях магистральных газопроводов их устанавливают группами в зависимости от необходимой пропускной способности. Размеры пылеуловителей: по диаметру от 1 до 2,4 м, по высоте от 5,8 до 8,8 м. В пылеуловителе имеются устройства, обеспечивающие контактирование газа с маслом и отделение твердых и жидких частиц от газа. Оседающий в пылеуловителе шлам периодически удаляют, загрязненное масло заменяют.

Осушку газа на головных сооружениях осуществляют двумя способами:   абсорбционным (с жидким поглотителем) и адсорбционным (с твердыми поглотителями). Газ после пылеуловителей попадает в абсорберы, где очищается от взвешенных капель жидкости и водяных паров путем активного контакта с абсорбентом, чаще всего диэтиленгликолем. В последнее время, определенное значение приобретает осушка газа твердыми поглотителями. В качестве адсорбентов применяют активированную окись алюминия, флюорит, боксит, силикагель или другие реагенты. Установка такой осушки состоит из группы адсорберов (не менее двух), подогревателя газа и теплообменников. Влажный газ после очистки от пыли поступает в адсорбер, где проходит через один или несколько слоев адсорбента. Периодически часть адсорберов отключают от системы для регенерации адсорбента

Для отделения от газа конденсата и воды с успехом используют низкотемпературную сепарацию, особенно при отборе газа из месторождений с высоким пластовым давлением. Газ из скважин без дросселирования подводят к установке и направляют во влагосборник для предварительной очистки. Затем в теплообменнике происходит его охлаждение холодным газом из сепаратора и выделение части жидкости в гидроуловитель. Далее, пройдя через штуцер, газ дросселируется, температура его снижается, и в следующем сепараторе оставшаяся жидкость выделяется. В процессе отбора влаги в газ вводят метанол или диэтиленгликоль во избежание образования кристаллогидратов. Наиболее перспективной в настоящее время считается низкотемпературная сепарация с впрыском ингибитора гидратообразования непосредственно в поток газа. Недостатком такой схемы является использование в ней громоздких и металлоемких теплообменников типа «труба в трубе». Более эффективны кожухотрубные теплообменники с впрыском диэтиленгликоля.

Для улавливания жидкости и твердых примесей, оставшихся в газе после очистных устройств, на головном участке магистрального газопровода врезают конденсатосборники и предусматривают дренажные устройства. Практика показала, что наиболее эффективно это делать на восходящих участках газопровода. Чтобы обнаруживать и предотвращать возможные утечки газа, перед подачей в магистральный газопровод ему придают специфический запах с помощью одорантов — веществ, обладающих резким запахом (этилмеркаптан, сульфан, метилмеркаптан, пропилмеркаптан и др.). Примерная среднегодовая норма расхода одоранта — 16 г на 1000 м3 газа. Одорированный газ достаточно длительное время сохраняет приобретенное качество и доходит к потребителям почти с начальной степенью одоризации. Применяют одоризационные установки барботажные, с капельным одоризатором и др. В последнее время широко используются автоматические одоризационные установки. Учитывая, что одоранты — легкоиспаряющиеся горючие жидкости, при обращении с ними требуется строгое соблюдение мер безопасности.

Головная КС отличается от линейной тем, что на ее территории размещены все установки по подготовке газа к дальней перекачке. Линейная часть газопровода представляет собой непрерывную трубу между отдельными КС, пересекающую на всем протяжении от начальной до конечной точек множество естественных и искусственных препятствий [1].

 

2.2 Компрессорные станции

 

Компрессорные станции (КС) предназначены для повышения давления и перекачки газа по магистральному газопроводу (МГ). Они служат управляющим элементом в комплексе сооружений, входящих в МГ. Практически именно параметрами работы КС определяется режим работы газопровода. Наличие КС позволяет регулировать режим работы газопровода при колебаниях потребления газа, максимально использовать аккумулирующую способность газопровода.

В газовой промышленности в качестве газоперекачивающих агрегатов (ГПА) на МГ применяют центробежные нагнетатели с приводом от газовой турбины или электродвигателя [1].

 

2.3 Очистка газа на КС

 

Для предотвращения загрязнения и эрозии оборудования и трубопроводов на входе газа на компрессорную станцию следует предусматривать установки очистки газа от твёрдых и жидких примесей. Количество твёрдых и жидких примесей в газе после установки очистки не должно превышать допустимых по техническим условиям норм для газоперекачивающих агрегатов.

В настоящее время на КС применяются масляные и циклонные пылеуловители, но  наиболее применяемыми являются циклонные. На проектируемых и вводимых в эксплуатацию КС предусматривают циклонные сепараторы различных типов, а на существующих КС масляные пылеуловители реконструируют или заменяют на циклонные.

Очистку следует предусматривать, как правило, в одну ступень – в пылеуловителях. Вторую ступень очистки газа – в фильтрах–сепараторах, как правило, следует предусматривать на отдельных компрессорных станциях в среднем через 3–5 компрессорных станций с преимущественным применением фильтров– сепараторов после участков с повышенной вероятностью аварий линейной части и (или) сложными условиями её восстановления, а также после подводных переходов длиной более 500 м [1].

 

2.4 Охлаждение газа на КС

 

Охлаждение газа — понижение температуры перекачиваемого газа на газовых сборных пунктах и компрессорных станциях магистральных газопроводов, подземных хранилищ газа, газоперерабатывающих заводах.

Охлаждение газа производят между ступенями сжатия компрессорных агрегатов и на выходе из компрессорной станции. Межступенчатые холодильники для охлаждения газа обеспечивают определённую температуру газа на входе в последующую ступень компримирования, массовая производительность которой будет тем выше, чем ниже температура всасываемого газа.

Энергия, необходимая для охлаждения газа, зависит от количества отводимого от газа тепла и способа охлаждения. Охлаждение газа производят до температуры, превышающей на 10-15 К температуру атмосферного воздуха, с помощью теплообменных агрегатов водяного или воздушного охлаждения газа или до температуры 271 К с целью ограничения теплового воздействия в районах прокладки трубопровода в многолетнемёрзлых грунтах с помощью аппаратов воздушного охлаждения газа (ABO), холодильных установок, рекуперативной системы охлаждения газа, а также системы охлаждения газа с дополнительным сжатием перед ABO и турбодентандером после ABO.

Для охлаждения газа до положительных температур в качестве охлаждающего теплоносителя могут использоваться вода и воздух. Применение воздушного охлаждения резко сокращает потребление воды, исключает обмерзание и разрушение градирен при низкой температуре окружающей среды, уменьшает загрязнение теплообменной аппаратуры.

Схемы внешней трубопроводной обвязки систем охлаждения газа с ABO бывают параллельные, параллельно-последовательные и комбинированные, в которых наряду с ABO используются рекуперативные теплообменники обычного типа. Совместная эксплуатация ABO и холодильных установок экономически целесообразна при разности температур на выходе из ABO и воздуха на входе в ABO более 12-15 К. При охлаждении газа до температур ниже нуля применяются парокомпрессионные и абсорбционные холодильные установки. При рекуперативной системе охлаждения газа из магистрального газопровода очищенный от механических примесей в пылеуловителях транспортируемый газ поступает вначале в рекуперативные теплообменники, где подогревается газом обратного потока, и после этого направляется на сжатие в нагнетателях. После сжатия газ охлаждается в ABO, затем поступает в рекуперативные теплообменники, охлаждается и подаётся в газопровод. Использование рекуперативной системы охлаждения газа ограничено в период пуска или остановки газопровода, т.к. уровень и интенсивность охлаждения газа зависят от пропускной способности газопровода. Целесообразно устанавливать станции охлаждения газа с холодильными машинами через 2-3 станции, на которых предусмотрена рекуперативная система охлаждения газа.

В системах охлаждения газа с дополнительным сжатием газа перед ABO транспортируемый газ после сжатия в основных нагнетателях поступает в 2 ступени дополнительного сжатия и далее через ABO в турбодетандер, после чего охлаждённый до необходимой температуры газ направляется в магистральный газопровод.

Круглогодичное охлаждение газа обеспечивает ограничение теплового воздействия газопроводов на окружающую среду, улучшает условия работы противокоррозионной изоляции, повышает надёжность, эффективность работы магистрального газопровода. Выбор уровня охлаждения газа на компрессорных станциях определяется комплексом гидравлических и тепловых режимов работы газопровода, компрессорных станций и станций охлаждения газа с учётом теплового взаимодействия трубопроводов с грунтом.

 


Информация о работе Газовая промышленность