Автор работы: Пользователь скрыл имя, 19 Октября 2009 в 18:55, Не определен
GPS, Датчик света, датчик дождя
Автомобиль видящий и коммуницирующий
Перечисленные выше уже созданные элементы автоматизации снимают технические проблемы управления агрегатами автомобиля. Остаются проблемы ориентации и взаимодействия с внешней средой. Для ориентации в пространстве могут использоваться разнообразные устройства, например, инфракрасные датчики, действующие на предельно близком расстоянии. Эти устройства хорошо известны. Менее известен так называемый «ладар», который иногда еще именуют «лидаром» от английского названия Light-Imaging Detection and Ranging. Сначала он использовался как прибор для измерения атмосферных характеристик дистанционным способом лазерного зондирования. Позже усилиями компании SICK ладар стал составной частью системы измерения дистанции (Laser Measurement Sensor, LMS). Идея ладара не оригинальна: LMS излучает несколько лучей и воспринимает отраженные данные. Лазеры монтируются в головке, вращающейся со скоростью несколько сотен оборотов в минуту. Наибольшая сложность заключается в том, что при движении по земле на коротких расстояниях с большой скоростью возникают большие угловые перемещения. Поэтому, несмотря на использование различного рода систем стабилизации и сложных подвесов, для обработки изображений в режиме реального времени требуется применение серьезной вычислительной мощности и соответствующего программного обеспечения. О масштабе решаемых задач можно судить по тому, например, что сканирующий ладар Velodyne's HDL-64E генерирует данные по 2,5 млн. точек в секунду и передает их в виде пакетов данных, используя Fast Ethernet.
Обладая в полной мере свойствами инерциальной навигационной системы с полным набором датчиков ориентации и перемещения (см рисунок), интегрированная система способна определять все параметры движения транспортного средства: угловые скорости, ускорения, ударные и вибрационные воздействия, перегрузки.
При этом в отличие от традиционных блоков датчиков движения в интегрированной системе реализован сложный математический аппарат пересчета воздействий в различные системы координат. Поэтому потребитель может использовать выходную информацию системы непосредственно для своих приложений без предварительной обработки.
Гироскопы для автомобильных навигационных систем
Как уже говорилось, все чаще в автомобили устанавливаются навигационные системы, предназначенные для ориентации в незнакомой водителю местности, поиска оптимального маршрута и т.д. Подавляющее большинство таких систем основано на системе глобального спутникового позиционирования (GPS). Однако такая система имеет существенный недостаток невозможность работы в зоне неуверенного приема сигнала со спутников, в условиях мегаполиса, в тоннелях, подземных гаражах и т.д. Иногда оказывается, что точность определения и отслеживания координат с использованием GPS недостаточна для работы системы в целом.
В этом случае на выручку GPS приходят различные дополнительные датчики, например гироскопические датчики, которые позволяют отследить скорость и направление перемещения автомобиля без участия спутниковых систем.
Компания Murata, активно занимающаяся вопросами разработок, представила на рынок новый гироскоп серии MEV-50A-R.
Принцип действия датчика основан на возникновении силы Кориолиса при повороте качающегося маятника вокруг оси качения. При этом возникает сила Кориолиса, перпендикулярная плоскости качения маятника. Датчик состоит из так называемой биморфной пластины. Биморфная пластина представляет собой две керамические пластины с разной поляризацией, соединенные вместе. На одну из пластин биморфа подается высокочастотное напряжение, под действием которого весь биморф приводится в колебательное движение. При этом со второй пластины снимается напряжение, которое возникает при ее колебании, вызванном колебаниями первой пластины. При повороте пластин вокруг своей оси возникает сила Кориолиса, которая изменяет характер колебаний керамических пластин и, соответственно, приводит к изменению напряжения, снимаемого со второй пластины. Далее, этот сигнал обрабатывается и на выходе гироскопического датчика получается напряжение, которое прямо пропорционально скорости поворота датчика вокруг рабочей оси. Эта техника измерения позволяет добиться пониженного значения шумов, по сравнению с существующими методиками, применяемыми в акселерометрах. В будущем компания Murata планирует добавить в гироскопы цифровую схему температурной компенсации. Для включения гироскопа в электрическую схему потребуется минимум внешних компонентов: 5В регулятор напряжения, АЦП (встроен в большинство современных микроконтроллеров), фильтрующий конденсатор и два резистора.
Радар
Второй датчик
подразумевает использование
Автор считает, что
не стоит подробнее
излагать возможные
конструкции радаров,
надеясь, что всем про
это известно, тем более
что следующий датчик
схож по принципу действия,
имеет более высокую
точность и относительно
недавно изобретён.
Ладар и лидар, два названия одного прибора.
Скорость можно также замерить ладаром, принцип работы которого похож на устройство обыкновенного лазерного дальномера. Для своих вычислений ладар берет за основу два местонахождения объекта и время, за которое он преодолел расстояние между ними. Далее компьютер делит расстояние на время и получает моментальную скорость. Стоит отметить, что если с радаром прицеливать не обязательно, то ладар необходимо направлять исключительно на номерной знак автомобиля, поскольку он является лучшим отражающим элементом на автомобиле.
LIDAR (англ. Light Detection and Ranging, лидамр) -- технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления отражения света и его рассеивания в прозрачных и полупрозрачных средах.
Лидар как прибор представляет собой, как минимум, активный дальномер оптического диапазона. Сканирующие лидары в системах машинного зрения формируют двумерную или трёхмерную картину окружающего пространства. Устоявшийся перевод LIDAR как «лазерный радар» не вполне корректен, так как в системах ближнего радиуса действия (например, предназначенных для работы в помещениях), главные свойства лазера: когерентность, высокая плотность и мгновенная мощность излучения -- не востребованы, излучателями света в таких системах могут служить обычные светодиоды.
История создания.
В первой половине 1960-х годов, начались опыты по применению лидара с лазерным излучателями для исследования атмосферы.
В 1969 году лазерный дальномер и мишень, установленная на Аполлоне-11, применялся для измерения расстояния от Земли до Луны. Четыре мишени, доставленные на Луну тремя «Аполлонами» и «Луноходом-2», и по сей день используются для наблюдения за орбитой Луны.
В течение 70-х годов, с одной стороны, отлаживалась технология лазерных дальномеров и компактных полупроводниковых лазеров, а с другой -- были начаты исследования рассеяния лазерного луча в атмосфере. К началу 80-х годов эти исследования стали настолько известными в академических кругах США, что аббревиатура LIDAR стала именем нарицательным -- lidar, что зафиксировал словарь Уэбстера 1985 года. В те же годы лазерные дальномеры достигли стадии зрелой технологии (по крайней мере, в военных приложениях) и выделились в отдельную от лидаров отрасль техники.
Принцип действия
Принцип действия
лидара не имеет больших отличий
от радара: направленный луч источника
излучения отражается от целей, возвращается
к источнику и улавливается высокочувствительным
приёмником (в случае лидара -- светочувствительным
полупроводниковым прибором); время отклика
обратно пропорционально расстоянию до
цели. В отличие от радиоволн, эффективно
отражающихся только от достаточно крупных
металлических целей, световые волны подвержены
рассеиванию в любых средах, в том числе
в воздухе, поэтому возможно не только
определять расстояние до непрозрачных
(отражающих свет) дискретных целей, но
и фиксировать интенсивность рассеивания
света в прозрачных средах. Возвращающийся
отражённый сигнал проходит через ту же
рассеивающую среду, что и луч от источника,
подвергается вторичному рассеиванию,
поэтому восстановление действительных
параметров распределённой оптической
среды -- достаточно сложная задача, решаемая
как аналитическими, так и эвристическими
методами. В устройствах ближнего радиуса
действия вместо коротких импульсов может
использоваться непрерывная амплитудная
модуляция излучения переменным напряжением
с частотой в единицы мегагерц.
Инфракрасный датчик движения
Датчик, обнаруживающий перемещение каких-либо объектов.
Принцип работы основан на отслеживании уровня ИК - излучения в поле зрения датчика (как правило, пироэлектрического). Сигнал на выходе датчика монотонно зависит от уровня ИК излучения, усредненного по полю зрения датчика. При появлении человека (или другого массивного объекта с температурой большей, чем температура фона) на выходе пироэлектрического датчика повышается напряжение. Этот скачёк и является сигналом для включения нагрузки датчика движения. Датчик обнаруживает только изменения ИК фона, то есть неподвижный объект не будет обнаружен.
Ограничения
Инфракрасный датчик прост и надёжен по конструкции, но его применение в системах автоматического управления связано с некоторыми проблемами. Так, например, в поле зрения датчика не должен попадать уровень земли (дорожного покрытия), и зона действия не должна превышать 3 метров иначе система постоянно будет регистрировать различные помехи, в том числе и естественные.
Ультразвуковой датчик
Основной элемент активного круиз-контроля - ультразвуковой датчик, установленный в переднем бампере или за радиаторной решеткой автомобиля. Его принцип работы аналогичен датчикам парковочного радара, только радиус действия составляет несколько сотен метров, а угол охвата, наоборот, ограничен несколькими градусами. Посылая ультразвуковой сигнал, датчик ждет ответа. Если луч нашел препятствие в виде автомобиля, движущегося с меньшей скоростью и вернулся - значит, необходимо снизить скорость. Как только дорога вновь освобождается, машина разгоняется до первоначальной скорости.
Автомобильные датчики дождя.
Автомобильные датчики дождя... То ли это предмет роскоши и явное излишество, то ли это необходимое средство повышения безопасности. Попробуем разобраться вместе. Каждый раз, когда появляется возможность опробовать «на себе» какие-либо новинки, встает вопрос: «Рискнуть или нет?».
Но с датчиком дождя как-то все сразу стало ясно -- рискнуть стоит. Во-первых, интересно. Во-вторых, нынешнее лето как-то само собой располагает к подобным экспериментам. В-третьих, поддержать отечественного производителя -- благое дело. Прежде всего, для чего нужен такой датчик? Устанавливаемые в автомобили среднего и высокого класса комплекты автоматически включают «дворники» при начале дождя. Лучшие модели еще и выбирают фиксированные скорости работы стеклоочистителей в зависимости от интенсивности осадков. Тем самым водитель освобождается от рутинной работы с подрулевым переключателем и гораздо больше внимания может уделять собственно управлению автомобилем. Так что, как видите, здесь налицо и комфорт, и забота о безопасности.
Российский датчик дождя (ДД), разработанный компанией «Сети и системы», представляет собой комплект, в который входят блок оптического контроля, блок реле, штекерный разъем и кнопка управления. Чтобы все правильно установить, необходимо знать несколько простых правил. Оптический датчик крепится с внутренней стороны ветрового стекла обязательно в зоне работы щеток стеклоочистителя. Место крепления блока реле вы вольны выбирать сами. В «десятке», например, его удобно крепить в нише блока реле и предохранителей. Для управляющей кнопки есть штатное место.
Как же показала себя новинка? Если при выезде вы не забыли включить заветную кнопку, то при первых каплях дождя она включит «дворники» еще до того, как вы сообразите это сделать сами. В отличие от своих импортных аналогов, российский датчик ПЛАВНО меняет частоту движения щеток в зависимости от интенсивности ливня. Кроме этого, датчик может выполнять и одну новую функцию, так сказать, национального свойства. Если встречная или обгоняемая машина окатила вас грязным потоком, в работу включается не только «дворник», но и система омывания. То же самое происходит и при движении по пыльным дорогам. Столь высокую чувствительность прибору обеспечивают не четыре, как у большинства аналогов, а девять светоприемников.
Двухмесячный
опыт эксплуатации показал не только
высокую оперативность и
Автомобильные шины с электронными датчиками
Французская компания Michelin собирается устанавливать в свои автомобильные покрышки электронные датчики, которые будут постоянно передавать на бортовой компьютер автомашины данные о давлении. Система Michelin состоит из микросхемы размером со спичечную головку и встроенного радиопередатчика с антенной. Оба элемента будут завулканизированы внутри шины. Как сообщила в интервью Reuters представитель компании Нэн Бэнкс, такое расположение устройства практически не повлияет на качество передачи, так как сигнал ослабевает на 10%.
Видеосистема.
Сущность видеосистемы заключается в контроле «слепых» зон автомобиля. При этом изображение с видеокамер в реальном времени передаётся на монитор установленный в салоне или на место боковых зеркал. Разрабатывается проект, в котором изображение проецируется непосредственно на лобовое стекло при этом, не мешая водителю. Видеокамеры в дорогих системах подкрепляются инфракрасными и ультразвуковыми датчиками, которые в случае опасности заранее предупреждают водителя. Во время поездки по городу камеры наблюдения фиксируют категории автомобилей, дорожную разметку и знаки. Например, автомобиль видит знак "Стоп" и предупреждает водителя о нем. Если же водитель не среагирует, то автомобиль остановится сам.