Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 21:12, доклад
Сварочная дуга является мощным концентрированным источником теплоты. Электрическая энергия, потребляемая дугой, в основном превращается в тепловую энергию. Выделение тепловой энергии происходит в анодном и катодном активных пятнах и дуговом промежутке.
Тепловые процессы при дуговой сварке
Сварочная дуга как источник нагрева
Сварочная дуга является мощным концентрированным источником теплоты. Электрическая энергия, потребляемая дугой, в основном превращается в тепловую энергию. Выделение тепловой энергии происходит в анодном и катодном активных пятнах и дуговом промежутке. При нагреве детали наибольшей интенсивности тепловой поток дуги достигает в центральной зоне активного пятна (рис. 1). По мере удаления от центра пятна интенсивность теплового потока убывает. Распределение теплоты вдоль дугового промежутка происходит в соответствии с падением напряжения в его областях.
Рис. 1. Удельный тепловой поток при нагреве дугой: а - при сварке покрытым электродом, б - при сварке под слоем флюса.
Полная тепловая мощность дуги Q (Дж/с) зависит от силы сварочного тока Iсв (А) и напряжения дуги Uд (В): Q = Iсв Uд. Однако не вся теплота дуги затрагивается на расплавление металла, т.е. на собственно сварку. Значительная часть ее расходуется на теплоотдачу в окружающую среду, расплавление электродного покрытия или флюса, разбрызгивание и т.п. Характер распределения полной тепловой мощности по отдельным статьям расхода определяют термином «тепловой баланс дуги». На рис. 2 показаны схемы тепловых балансов дуги при ручной сварке покрытыми электродами и сварке под флюсом. Часть общей тепловой мощности дуги, расходуемой непосредственно на нагрев и расплавление основного и присадочного металлов, называют эффективной тепловой мощностью дуги q (Дж/с). Она всегда меньше полной тепловой мощности дуга. Эффективная тепловая мощность сварочной дуги представляет собой количество теплоты, введенное дугой в свариваемую деталь в единицу времени. Она определяется уравнением q = Iсв Uд h, h - где коэффициент полезного действия дуги, представляющий собой отношение эффективной тепловой мощности к полной тепловой мощности дуги. Эффективная тепловая мощность зависит от способа сварки, материала электрода, состава покрытия или флюса и ряда других факторов.
Рис. 2. Тепловой баланс при сварке: а - покрытыми электродами, б - подслоем флюса
Данные значений для различных способов сварки приведены на табл. 1. Данные рис. 2 и табл. 1 показывают, что теплота дуги наиболее рационально используется при автоматической сварке под флюсом.
1. Значения h для различных способов сварки
Способ сварки | Значение h |
В защитном газе вольфрамовым электродом | 0,6 |
Покрытым электродом | 0,75 |
Под флюсом | 0,8 - 0,9 |
Плавление металла электрода и его перенос в дуге при сварке
Нагрев
и плавление электрода
Гравитационная сила проявляется в стремлении капли перемещаться по вертикали сверху вниз.
Сила
поверхностного натяжения обеспечивает
капле сферическую форму. Электромагнитные
силы играют важнейшую роль в отрыве
и направленном переносе капель к
сварочной ванне при сварке швов
в любом пространственном положении.
Электрический ток, проходя по электроду,
создает вокруг него магнитное поле,
оказывающее сжимающее
Рис. 3. Схема сжимающего действия электромагнитных сил на жидкую каплю электродного металла
При этом капля за счет действия электромагнитной силы приобретает направленность движения к сварочной ванне. Сила внутреннего давления газов также участвует в переносе капли. Расплавленный металл на электроде сильно перегрет. Образующиеся в нем газы способствуют отрыву его от торца электрода и могут раздробить на более мелкие капли.
При дуговой сварке плавящимся электродом различают три типа переноса электродного металла: крупнокапельный, мелкокапельный, или струйный, и перенос с образованием коротких замыканий дуги.
Характер переноса капель с электрода в сварочную ванну зависит от силы сварочного тока и напряжения дуги.
Установлено, что с увеличением силы тока размер капель уменьшается, а число их, образующихся в единицу времени, возрастает. С увеличением напряжения дуги, наоборот, размер капель увеличивается, а число их уменьшается. Так, при сварке голой проволокой на малых токах (плотностях) жидкий металл переходит в сварочную ванну в виде крупных капель с кратковременными замыканиями дугового промежутка, а при сварке покрытыми электродами и под флюсом на обычных плотностях тока - в виде мелких капель без замыкания дугового промежутка. При сварке в защитных газах и под флюсом тонкой проволокой на повышенных плотностях тока наблюдается мелкокапельный (струйный) перенос металла. В этом случае очень мелкие капли образуют сплошную коническую струю жидкого металла, переходящего в шов также без коротких замыканий, что уменьшает разбрызгивание металла и улучшает формирование швов.
Производительность процесса дуговой сварки
Производительность процесса дуговой сварки оценивают по количеству проплавленного в единицу времени основного металла Gпр и количеству наплавленного металла Gн, определяемого как избыток массы конструкции после сварки по сравнению с массой до сварки.
При сварке неплавящимся электродом соединений встык или с отбортовкой без присадочной проволоки важно обеспечить производительность проплавления, а при сварке плавящимся электродом - производительность проплавления и наплавки. При сварке плавящимся электродом производительность оценивают по количеству наплавленного электродного металла, определяемого по формуле Gн = aн*Iсв*tо, где Iсв - сила тока, A; tо - основное время сварки (время чистого горения дуги), ч; aн- коэффициент наплавки, г (А*ч).
Коэффициент наплавки выражается отношением массы металла, наплавленного за единицу времени горения дуги, к единице силы сварочного тока. Обычно его представляют количеством наплавленного в течение 1 ч электродного металла (г), приходящимся на 1 А сварочного тока. При сварке покрытыми электродами коэффициент наплавки составляет 6 - 12, под флюсом – 10 - 16, в углекислом газе - 12 - 20, при электрошлаковой - 18 - 22 г/(А*ч).
Производительность наплавки (Gн связана с производительностью расплавления электродной проволоки: Gн = aр*Iсв*tо, где aр - коэффициент расплавления электродной проволоки, г/(А*ч).
Коэффициент расплавления выражают отношением массы электрода, расплавленного за единицу времени горения дуги, к единице силы сварочного тока. Обычно его представляют количеством расплавленного металла электрода в течение 1 ч, приходящимся на 1 А сварочного тока. Скорость расплавления электродного металла в значительной степени определяет производительность и эффективность процесса сварки, а коэффициент расплавления зависит от ряда факторов, определяющих условия сварки: рода и силы тока, полярности, напряжения дуга, состава и толщины покрытия электрода или флюса. Коэффициент расплавления при сварке плавящимся электродом в среде защитных газов заметно изменяется с изменением полярности тока и состава газа. При увеличении сварочного тока, как правило, коэффициент расплавления возрастает. Особенно это заметно при больших плотностях тока, применяемых при механизированной и автоматической сварке. В большинстве случаев при сварке коэффициент ан меньше коэффициента ар на величину потерь электродного металла, возникающих за счет угара и разбрызгивания. Эта часть металла, не участвующая в образовании шва, характеризуется коэффициентом потерь а, который выражают в процентах:
Коэффициент потерь зависит от способа сварки, типа электрода и параметров режима. На потери значительное влияние оказывает характер капельного переноса электродного металла в дуге при сварке. Так, при сварке покрытыми электродами он составляет 5 - 10%, под флюсом – 1 - 5, .в защитных газах – 1 - 5%. В тех случаях, когда в составе электродных покрытий или наполнителе порошковой проволоки содержится значительное количество металлических составляющих, коэффициент а может иметь положительную величину, т.е. aн будет больше aр.
Общие сведения о нагреве металла при сварке
Нагревание металла в сварном соединении при дуговой сварке определяется эффективной тепловой мощностью дуги и распределением выделяемой теплоты на поверхности и в объеме детали. Наибольшей интенсивности тепловой поток сварочной дуги достигает в центральной зоне активного пятна, где вследствие электронной и ионной бомбардировки происходит непосредственное выделение теплоты в поверхностных слоях металла. В пограничных с активным пятном областях металл нагревается в основном за счет лучистого обмена со столбом дуги и конвективного обмена с горячими газами дуги. По мере удаления от центра пятна интенсивность теплового потока убывает (см. рис. 1). Из приведенных данных видно, что тепловой поток дуги при сварке под флюсом является более сосредоточенным, чем при ручной дуговой сварке. Знание о распространении теплоты при сварке имеет важное значение для изучения процессов, связанных с нагревом металла при всех видах сварки.
Распространение теплоты в основном металле происходит за счет теплопроводности. В начальный момент сварки поступление теплоты в металл от дуги превышает его теплоотвод от места нагрева. При этом температура металла в точках, находящихся на определенном расстоянии от дуги, непрерывно повышается. Такое состояние металла в сварном соединении рассматривается как неустановившийся тепловой режим. По прошествии некоторого времени наступает равновесие между количеством теплоты, поступающей от источника нагрева, и теплоты, отводимой в изделие. При этом температура металла в точках, находящихся на определенных расстояниях от дуги, остается неизменной. Тепловое состояние металла достигает определенной стабильности и характеризуется как установившийся тепловой режим.
Схематическое
изображение теплового
Нагрев основного металла подвижным источником
В качестве подвижного источника теплоты принимается источник определенной тепловой мощности, перемещающийся прямолинейно и равномерно, т.е. с постоянной скоростью. При неподвижном источнике нагрева (рис. 4) тепловое поле в металле характеризуется системой концентрических изотерм с общим центром. При подвижном источнике нагрева изотермы приобретают вытянутую форму и перемещаются в направлении его движения.
Процесс
распространения теплоты в