Автор работы: Пользователь скрыл имя, 04 Декабря 2011 в 22:36, курсовая работа
Кожухотрубный теплообменник является наиболее распространенным аппаратом вследствие компактного размещения большой теплопередающей поверхности в единице объема аппарата. Поверхность теплообмена в нем образуется пучком параллельно расположенных трубок, концы которых закреплены в двух трубных досках (решетках). Трубки заключены в цилиндрический кожух, приваренный к трубным доскам или соединенный с ними фланцами. К трубным решеткам крепятся на болтах распределительные головки (днища), что позволяет легко снять их и произвести чистку трубок или в случае необходимости заменить новыми. Для подачи и отвода теплообменивающихся сред в аппарате имеются штуцера.
Введение………………………………………………………………3
Исходные данные……………………………………………………5
Тепловой расчет……………………………………………………..5
Повторный расчет…………………………………………………..7
Гидродинамический расчет………………………………………..9
Чертеж пароводяного теплообменного аппарата………………11
Содержание
Теплообменным аппаратом называют всякое устройство, в котором один теплоноситель - горячая среда, передает теплоту другому теплоносителю - холодной среде. По принципу работы аппараты делят на: регенеративные, смесительные и рекуперативные.
Особенно широкое развитие во всех областях техники получили рекуперативные аппараты, в которых теплота от горячей среды к холодной передается через разделительную стенку.
Теплообменные
аппараты могут иметь самые
В
теплообменных аппаратах
Если направление движения горячего и холодного теплоносителей совпадают, то такое движение называют прямотоком. Если направление движения горячего теплоносителя противоположно движению холодного теплоносителя, то такое движение называют противотоком. Если же горячий теплоноситель движется перпендикулярно движению холодного теплоносителя, то такое движение называется перекрестным потоком. Кроме этих основных схем движения, в теплообменных аппаратах применяют более сложные схемы движения, включающие все три основные схемы.
Кожухотрубный теплообменник является наиболее распространенным аппаратом вследствие компактного размещения большой теплопередающей поверхности в единице объема аппарата. Поверхность теплообмена в нем образуется пучком параллельно расположенных трубок, концы которых закреплены в двух трубных досках (решетках). Трубки заключены в цилиндрический кожух, приваренный к трубным доскам или соединенный с ними фланцами. К трубным решеткам крепятся на болтах распределительные головки (днища), что позволяет легко снять их и произвести чистку трубок или в случае необходимости заменить новыми. Для подачи и отвода теплообменивающихся сред в аппарате имеются штуцера. В целях предупреждения смешения сред трубки закрепляются в решетах чаще всего развальцовкой, сваркой или реже для предупреждения термических напряжений с помощью сальников.
Преимущества
проведения процессов теплообмена
по принципу противотока, что обычно
и выполняется в кожухотрубных
теплообменных аппаратах. При этом
охлаждаемую среду можно
Работу
t2’, ̊C |
t2’’, ̊C |
Р, МПа |
Q, кВт |
d2/d1, мм | V1,
м/c |
V2,
м/с | |
30 | 80 | 102 | 0,361 | 2800 | 16/14 | 8 | 0,8 |
Определяем параметры
греющего пара для давления:
Определяем расход
первичного теплоносителя:
Определяем расход
вторичного теплоносителя:
Где – теплоемкость воды при средней .
Для расчета
коэффициента теплоотдачи к внешней
поверхности трубки при конденсации
пара надо знать температуру внешней
поверхности стенки и высоту трубки.
Эти значения неизвестны, поэтому
расчет проводим методом последовательных
приближений. Определяем среднелогарифмический
температурный напор:
Задаемся
температурой стенки в первом приближении
Задаемся также высотой трубок .
Приведенная высота поверхности (длина трубки):
;
;
при , ,
Режим
течения турбулентный, поэтому расчет
ведем по формуле:
Здесь Pr, Prст – числа Прандля для конденсата
При , ;
При , .
Определим коэффициент теплоотдачи к воде.
Среднеарифметическая
температура воды
При физические свойства воды:
, , , .
Число Рейнольдса
для вторичного теплоносителя (вода):
Число Нуссельта
рассчитывают по формуле:
Коэффициент теплоотдачи
от пара к воде:
Средняя плотность
теплового потока
Поверхность теплообмена:
Число трубок в
одном ходе
Число ходов 4 и всего трубок .
Высота трубок
в первом приближении:
Температура стенок
трубок
Полученные
значения отличаются более чем на 10 %,
поэтому производим повторный расчет,
принимая .
Пусть длина
трубки равна:
Для вторичного
теплоносителя при ,
Коэффициент теплоотдачи:
Коэффициент теплопередачи:
Средняя плотность
теплового потока:
Поверхность теплообмена:
Число трубок в одном ходе 111. Всего трубок сохраняются прежними.
Высота трубок
во втором приближении:
Температура стенок
трубок:
Совпадение полученных значений с ранее принятыми лежит в пределах точности расчет, таким образом, окончательно принимаем и .
Определяем внутренний
диаметр корпуса теплообменника
В данном случае
выбираем шаг труб и коэффициент заполнения
трубной решетки
Определяем диаметры патрубков:
При
При
Полученные значения
диаметров патрубков следует
округлить до ближайших стандартных
размеров.
Гидравлическое
сопротивление пароводяных
Для вторичного теплоносителя (вода):
Сопротивление трения:
Коэффициент сопротивления
трения
Коэффициент местных сопротивлений:
- удар и поворот потока в входной и выходной камерах
- выход воды из камер в трубки и выход из трубок в камеры
- поворот на
угол 180º в камерах
Местные сопротивления:
Общее сопротивление
вторичного теплоносителя:
Мощность, необходимая
для перемещения теплоносителя:
Рисунок 1.
Информация о работе Расчет пароводяного теплообменного аппарата