Расчет кожухотрубного водоводяного теплообменника

Автор работы: Пользователь скрыл имя, 17 Января 2015 в 20:33, курсовая работа

Описание работы

Теплообменными аппаратами, или теплообменниками, называются устройства для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям). Теплообменные аппараты применяются для нагревания и охлаждения веществ в различных агрегатных состояниях, испарения жидкостей и конденсации паров, перегонки и сублимации, абсорбции и адсорбции, расплавления твердых тел и кристаллизации, отвода и подвода тепла при проведении экзо- и эндотермических реакций и т.д

Содержание работы

стр.
Введение
3
1. Общие сведения о теплообменных аппаратах. Их классификация
4
1.1 Поверхностные теплообменники
4
1.2 Смесительные теплообменники
6
1.3 Кожухотрубный теплообменный аппарат
6
2. Классификация испарителей
9
3. Современные теплообменные аппараты
13
4. Расчет кожухотрубного водоводяного теплообменника
18
4.1 Теплотехнический расчет
18
4.2 Гидравлический расчет

Заключение

Библиографический список

Файлы: 1 файл

гидравлика Ли.doc

— 306.00 Кб (Скачать файл)

Министерство Образования и Науки российской Федерации

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

            Кафедра химии и инженерной экологии в строительстве

 

 

 

 

КУРСОВОЙ ПРОЕКТ

по дисциплине «Гидравлика и теплотехника»

«Расчет кожухотрубного

водоводяного теплообменника»

 

 

 

                                                                                Выполнил: ст. гр. 0ИЗ-301  

                                                          Махиянова Лилия

                                                          Защищен:__________

                                                                  С  оценкой:_________            

                                                                              Принял: К.т.н., асс. каф. ХИЭС

                                                                                __________ Куколева Д.А.

 

 

 

 

 

г.Казань, 2013 г.

СОДЕРЖАНИЕ

 

 

стр.

Введение

3

1. Общие сведения о теплообменных аппаратах. Их классификация

4

    1.1 Поверхностные теплообменники

4

    1.2 Смесительные теплообменники

6

    1.3 Кожухотрубный теплообменный аппарат

6

2. Классификация испарителей

9

3. Современные теплообменные аппараты

13

4. Расчет кожухотрубного водоводяного теплообменника

18

     4.1  Теплотехнический расчет

18

     4.2  Гидравлический расчет

 

Заключение 

 

Библиографический список

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

 

Теплообменными аппаратами, или теплообменниками, называются устройства для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям). Теплообменные аппараты применяются для нагревания и охлаждения веществ в различных агрегатных состояниях, испарения жидкостей и конденсации паров, перегонки и сублимации, абсорбции и адсорбции, расплавления твердых тел и кристаллизации, отвода и подвода тепла при проведении экзо- и эндотермических реакций и т.д. Соответственно своему назначению теплообменные аппараты называют подогревателями, холодильниками, испарителями, конденсаторами, дистилляторами, сублиматорами, плавителями и т.п.

Теплообменник любой конструкции выполняет единственную функцию — осуществление эффективной передачи тепла от одной среды к другой. Именно этим фактором измеряется экономический эффект, который приносит теплообменник.

Необходимо заметить, что теплообменник сам по себе, вне аппарата в котором он применяется, не является самостоятельным устройством. Поэтому очень важно, чтобы характеристики теплообменника максимально соответствовали характеристикам аппарата теплового оборудования. Это достигается правильностью выбора конструкции теплообменника и его расчёта, а также материалов, которые применяются при его изготовлении.

Современные технологии позволяют максимально оптимизировать процесс передачи тепла. Это происходит за счёт использования приборов автоматического регулирования температуры и уменьшения пути теплоносителя в теплообменнике.

Материалы, применяемые в современных теплообменниках, также позволяют надолго забыть о коррозии поверхностей. Это позволяет намного увеличить срок службы аппарата, в котором применяется теплообменник.

 

1 Общие сведения о теплообменных аппаратах. Их классификация

 

Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой. Теплообменные аппараты поверхностного типа, кроме того классифицируются:

    • по назначению (подогреватели, холодильники и т.д.);
    • по взаимному направлению теплоносителей (прямоток, противоток, смешанный ток и т.д.);
    • по материалу поверхности теплообмена; по числу ходов и т.д.

 
1.1 Поверхностные теплообменники

 

1) Рекуперативные теплообменники

Рекуперативный теплообменник — теплообменник, в котором горячий и холодный теплоносители движутся в разных каналах, в стенке между которыми происходит теплообмен. При неизменных условиях параметры теплоносителей на входе и в любом из сечений каналов, остаются неизменными, независимыми от времени, т.е процесс теплопередачи имеет стационарный характер. Поэтому рекуперативные теплообменники называют также стационарными. Рекуператоры могут работать как в периодическом, так и в непрерывном режимах.

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также перекрестноточными при взаимно перпендикулярном движении двух взаимодействующих сред.

Наиболее распространённые в промышленности рекуперативные теплообменники: 
- кожухотрубные теплообменники, 
- элементные (секционные) теплообменники, 
- двухтрубные теплообменники типа "труба в трубе", 
- витые теплообменники, 
- погружные теплообменники, 
- оросительные теплообменники, 
- ребристые теплообменники, 
- спиральные теплообменники, 
- пластинчатые теплообменники, 
- пластинчато-ребристые теплообменники, 
- графитовые теплообменники.

2)  Регенеративные теплообменники

В регенеративных поверхностных теплообменниках теплоносители (горячий и холодный) контактируют с твердой стенкой поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным. Регенераторы являются аппаратами периодического действия. 
 
                               

 

 

 

 

 

 

 

 

1.2 Смесительные теплообменники 

Смесительный теплообменник (контактный теплообменник) — теплообменник, предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред. Наиболее распространены пароводяные струйные аппараты ПСА — теплообменники струйного типа, использующие в своей основе струйный инжектор. Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют тепло. Однако, пригодны они лишь в случаях, когда по технологическим условиям производства допустимо смешение рабочих сред.

Большое применение контактные теплообменники находят в установках утилизации тепла дымовых газов, отработанного пара и т.п.

 
1.3 Кожухотрубный теплообменный аппарат

 

Наиболее широкое распространение получили кожухотрубные теплообменные аппараты (рис. 1), используемые для теплообмена между потоками в различных агрегатных состояниях (пар—жидкость, жидкость—жидкость, газ—газ, газ— жидкость). Аппарат состоит из пучка труб, помещенного внутри цилиндрического корпуса (обечайки), сваренного из листовой стали, реже — литого. Трубки завальцованы в двух трубных решетках или приварены к ним в зависимости от свойств конструкционных материалов. Трубки размещаются в пучке в шахматном порядке, по вершинам равностороннего треугольника, с шагом s/d = (1,25—2,20), где d — наружный диаметр труб. Аппарат снабжен двумя съемными крышками со штуцерами для входа и выхода теплоносителя, движущегося внутри труб. Трубное и межтрубное пространства разобщены. Второй теплоноситель движется в межтрубном пространстве, снабженном входным и выходным штуцерами. По трубам движется, как правило, тот поток, который содержит взвешенные твердые частицы (для удобства чистки), находится под большим давлением (чтобы не утяжелять корпус) или обладает агрессивными свойствами (для предохранения корпуса от коррозии). Площадь проходного сечения межтрубного пространства значительно больше (иногда в 2 раза) суммарного живого сечения труб, поэтому при одинаковых объемных расходах теплоносителей коэффициент теплоотдачи со стороны межтрубного пространства оказывается более низким. Для устранения этого явления прибегают к увеличению скорости теплоносителя путем размещения различных перегородок в межтрубном пространстве. В кожухотрубных теплообменниках достигаются достаточно большие отношения  теплообменной поверхности к объему и массе. Размеры поверхности теплообмена легко можно варьировать в широких пределах, конструкция имеет достаточную прочность и выдерживает нормальные нагрузки при сборке, перевозке и монтаже теплообменника, а также внутренние и внешние напряжения в обычных условиях эксплуатации. Очистка кожухотрубного теплообменника вызывает затруднений, а его элементы, наиболее подвержены коррозии, - прокладки и трубы - легко могут быть заменены. Конструктивные особенности позволяют применять этот тип почти во всех случаях, включая предельно низкие или высокие температуры и давления, большие градиенты температур, при  испарении и конденсации и использовании сильно загрязненных и коррозионно-активных теплоносителей. 

Трубы являются основным элементом, обеспечивающим теплопередачу между теплоносителем, протекающим внутри тубы и в межтрубном пространстве. Трубы могут быть либо гладкими, либо с невысокими ребрами  снаружи. В последнем случае наружный диаметр ребра выбирается немного меньше, чем наружный диаметр неоребренных концов труб, что позволяет  вставлять оребренные трубы через отверстия в трубной досках на каждом конце (за исключением U-образных труб, которые закрепляются только одной трубной доске). Трубы либо  развальцовываются в трубной доске, либо привариваются к ним снаружи. В некоторых случаях при низких давлениях трубы просто вставляются в  отверстия в трубных досках.

Трубная доска представляет собой металлический диск, в котором имеются отверстия для труб, элементов уплотнений, дистанционирующих решеток и крепежных болтов, если трубная доска привинчивается к фланцу кожуха (трубная доска может быть также приварена к кожуху). 

Кожух имеет вид цилиндра, внутри которого помещены трубы и циркулирует теплоноситель. Кожух малого диаметра (до 0,6м) можно изготовить из трубы, обрезав ее до желаемой длины. 

Теплоноситель поступает в кожух через входной патрубок и выходит через выходной. Чаще всего патрубки изготовляются из стандартных труб, которые привариваются к кожуху. Там, где требуются малые потери давления, равномерное распределение теплоносителя или защита от коррозии, применяются специальные конструкции. В тех случаях, когда в межтрубное пространство подается двухфазный поток или насыщенный пар, внутри кожуха за входным патрубком могут быть установлены отражающие пластины, имеющие несколько большие размеры, чем сечение патрубка.

Распределение теплоносителя по трубам осуществляется через коллекторы и патрубки. Поскольку теплоноситель, протекающий через трубы, в большей степени способствует коррозии, эти элементы могут быть изготовлены из сплавов или низкоуглеродистых сталей с наплавленным или нанесенным взрывом покрытием крышки сборного и распределительного коллектора прикрепляются таким образом, чтобы обеспечить без повреждений осмотр трубной доски и труб. Для теплоносителя, текущего по трубам, могут быть использованы вместо коллекторов завинчивающиеся крышки с боковыми патрубками.

Важным элементом большинства кожухотрубных теплообменников является набор перегородок. Они предохраняют трубы от изгиба и вибрации, а также направляют поток поперек труб для улучшения теплоотдачи(и, как следствие, увеличивают перепад давления).

2 Классификация испарителей

 

Испарители классифицируют по наиболее характерным признакам. По характеру охлаждаемой среды (по назначению) различают испарители для охлаждения жидких хладоносителей и технологических продуктов; для охлаждения воздуха и газообразных технологических продуктов, т. е. когда происходит непосредственный теплообмен между охлаждаемым объектом и хладагентом; для охлаждения твердых технологических продуктов; испарители-конденсаторы. 

В холодильной технике теплообменные аппараты, используемые для охлаждения жидких хладоносителей и жидких технологических продуктов, называют испарителями, а аппараты для охлаждения воздуха — батареями и воздухоохладителями. 

В зависимости от условий циркуляции охлаждаемой жидкости испарители могут быть закрытого или открытого типов. Испарителями закрытого типа называют испарители с закрытой системой циркуляции охлаждаемой жидкости, прокачиваемой насосом. К ним относятся кожухотрубные и кожухозмеевиковые испарители. Испарителями открытого типа называют испарители с открытым уровнем охлаждаемой жидкости, циркуляция которой создается мешалкой. К ним относятся вертикально-трубные и панельные испарители. 

По характеру заполнения хладагентом испарители разделяют на затопленные и незатопленные. К последним относятся оросительный, кожухотрубный с кипением в трубах, а также змеевиковый испарители с верхней подачей жидкости. 

Испарители также разделяют на группы в зависимости от того, на какой поверхности кипит хладагент: в межтрубном пространстве (кожухотрубные затопленные и оросительные) или внутри труб и каналов (кожухотрубные с кипением в трубах, вертикально-трубные и панельные). Последнее разделение важно с точки зрения выбора модели для расчета теплоотдачи кипящей жидкости. 

Испарители с вертикальными трубами обладают рядом положительных свойств, в частности, при намораживании льда на поверхности труб не происходит разрушений, что важно при охлаждении воды в аккумуляторах. Недостатком этих аппаратов является большая металлоемкость и сложность сварочных работ. 

Разновидностью испарителей с вертикальными трубами является панельный испаритель, состоящий из прямоугольного металлического или железобетонного бака, в который помещены испарительные секции панельного типа и мешалка, создающая циркуляцию хладоносителя. Использование панельных испарителей позволяет уменьшить массу на 25—30% (по сравнению с трубчатыми аппаратами), в 5—6 раз снизить расход бесшовных труб, стоимость которых почти втрое выше стоимости листового материала, уменьшить вместимость аппарата по хладагенту. 

Наиболее эффективны испарители с трубами, имеющими одновременно внутреннее и наружное оребрение. При проектировании аппаратов с большой плотностью теплового потока необходимо обеспечивать интенсификацию теплообмена со стороны фреонов различными методами (использование насадок, турбувизирующих поток, оребрение, режимный метод интенсификации, переход к насосной подаче хладагента), уменьшающими термическое сопротивление со стороны хладагента. 

Информация о работе Расчет кожухотрубного водоводяного теплообменника