Проектирование комбинированной системы теплоснабжения школы с применением теплового насоса

Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 14:35, курсовая работа

Описание работы

Развитие теплонасосных установок происходит в настоящее время стремительно. Теплонасосные системы теплоснабжения перспективны в качестве экологически чистых и энергоэффективных теплоисточников для децентрализованных потребителей тепловой энергии. Они используют в качестве источника – низкопотенциальную энергию: теплоту грунта, грунтовых вод, обратную воду систем централизованного теплоснабжения. Имеется много возможностей их эффективного применения, в основном для частичной замены котельных на органическом топливе, а также с использованием сбросного тепла, геотермального или солнечного тепла.
Таким образом, целью данного проекта является выбор теплового насоса и расчет различных его элементов.

Содержание работы

ВВЕДЕНИЕ…………………………………………………………………..…….
1 ОБЩАЯ ХАРАКТЕРИСТИКА ОБЪЕКТОВ…………………………………………
Основные характеристики МДОУ…………………………………………..
1.2 Характеристика отопления и вентиляции объектов…………………………
2 Тепловой РАСЧЕТ здания………………………………………………………
2.1 Тепловой режим здания……………………………………………………….
2.2 Теплотехнический расчет наружных ограждений…………………………..
2.3 Расчет теплопотерь через ограждения……………………………………….
2.4 Теплопотери с инфильтрацией………………………………………………..
2.5 Расчет тепловыделений…………………………………………………..……
2.6 Тепловой баланс………………………………………………………………..
2.7 Удельная тепловая характеристика здания……………………………..……
2.8 Расчет тепловой инерции…………………………………………………..….
3 ПРОВЕРКА ТЕПЛОВОЙ КОМФОРТНОСТИ……………………………………….
3.1 Тепловлажностный режим ограждений………………………………………
3.2 Первое условие комфортности………………………………………………..
3.3 Второе условие комфортности…………………………………………..……
4 МОДЕРНИЗАЦИЯ: ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ………………
5 СИСТЕМА ТЕПЛОСНАБЖЕНИЯ С ПРИМЕНЕНИЕМ ТЕПЛОВОГО
НАСОСА…………………………………………………………………………………..
5.1 Экономика возобновляемой энергетики………………………………..……
5.3 Принцип действия теплового насоса………………………………………….
5.4 Выбор холодильного агента…………………………………………………...
5.5 Выбор источника низкопотенциального тепла………………………………
5.6 Тепловой расчет теплонасосной установки………………………...………..
6 РАСЧЕТ ЭЛЕМЕНТОВ ТЕПЛОНАСОСНОЙ УСТАНОВКИ………………….…..
6.1 Расчет испарителя………………………………………………………..……
6.2 Расчет конденсатора……………………………………………………..…….
7 ОХРАНА ТРУДА ПРИ ЭКСПЛУАТАЦИИ ТЕПЛОВОГО НАСОСА………….….
8 ОЦЕНКА ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПРОЕКТА…………….……
ЗАКЛЮЧЕНИЕ……………………………………………………………………………
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………

Файлы: 1 файл

Диплом ТН.doc

— 5.17 Мб (Скачать файл)

,                                                      (5.18)

.

  1. Средняя температура низкотемпературного теплоотдатчика

,                                               (5.19)

.

  1. Средняя температура полученного тепла

,                                                (5.20)

.

  1. Коэффициент работоспособности тепла

,                                               (5.21)

 

 

.

  1. Эксергетический КПД установки

,                                                 (5.22)

.

 

6. РАСЧЕТ ЭЛЕМЕНТОВ ТЕПЛОНАСОСНОЙ УСТАНОВКИ

6.1 Расчет испарителя

 



В качестве испарителя выберем  теплообменник с U-образными трубами. В кожухотрубчатых аппаратах этой конструкции обеспечивается свободное удлинение труб, что исключает возможность возникновения температурных напряжений.

Рисунок 6.1 – Теплообменник с U-образными трубами

 

Такие аппараты (рис. 6.1) состоят из кожуха 2 и трубного пучка, имеющего одну трубную решетку 3 и U-образные трубы 1. Трубная решетка вместе с распределительной камерой 4 крепится к кожуху аппарата на фланце.

Для обеспечения раздельного  ввода и вывода циркулирующего по трубам теплоносителя в распределительной  камере предусмотрена перегородка 5.

Теплообменники типа У являются двухходовыми по трубному пространству и одно- или двухходовыми по межтрубному пространству. В последнем  случае в аппарате установлена продольная перегородка, извлекаемая из кожуха вместе с трубным пучком. Для исключения перетекания теплоносителя в зазорах между кожухом аппарата и перегородкой у стенки кожуха устанавливают гибкие металлические пластины или прокладку из прорезиненного асбестового шнура,

 

 

уложенную в паз перегородки.

В аппаратах типа У  обеспечивается свободное температурное удлинение труб: каждая труба может расширяться независимо от кожуха и соседних труб. Разность температур стенок труб по ходам в этих аппаратах не должна превышать 100°С. В противном случае могут возникнуть опасные температурные напряжения в трубной решетке вследствие температурного скачка на линии стыка двух ее частей.

Преимущество конструкции  аппарата типа У – возможность  периодического извлечения трубного пучка  для очистки наружной поверхности  труб или полной замены пучка. Однако следует отметить, что наружная поверхность труб в этих аппаратах неудобна для механической очистки.

Поскольку механическая очистка внутренней поверхности  труб в аппаратах типа У практически  невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующих отложений, которые требуют механической очистки.

Внутреннюю поверхность  труб в этих аппаратах очищают  водой, водяным паром, горячими нефтепродуктами  или химическими реагентами. Иногда используют гидромеханический способ (подача в трубное пространство потока жидкости, содержащей абразивный материал, твердые шары и др.).

Один из наиболее распространенных дефектов кожухотрубчатого теплообменника типа У – нарушение герметичности  узла соединения труб с трубной решеткой из-за весьма значительных изгибающих напряжений, возникающих от массы труб и протекающей в них среды. В связи с этим теплообменные аппараты типа У диаметром от 800мм и более для удобства монтажа и уменьшения изгибающих напряжений в трубном пучке снабжают роликовыми опорами.

Произведем тепловой расчет испарителя – U-образного теплообменника горизонтального типа.

  1. Исходные данные к расчету:

давление греющего конденсата ,

 

 

температура конденсата на входе  ,

температура конденсата на выходе ,

давление нагреваемого фреона ,

температура фреона ,

расход фреона .

  1. Расход греющего конденсата, поступающего в испаритель, из уравнения теплового баланса:
<p class="dash041e_0441_043d_043e_0432_043d_043e_0439

Информация о работе Проектирование комбинированной системы теплоснабжения школы с применением теплового насоса