Автор работы: Пользователь скрыл имя, 04 Марта 2011 в 13:19, реферат
Кожухотрубчатые теплообменники (рис. 1-2) представляют собой аппараты, выполненные из пучков труб, собранных при помощи трубных решеток, и ограниченные кожухами и крышками со штуцерами.
Кожухотрубчатые теплообменники……………………………………..3
Пластинчатые теплообменники………………………………………….8
Змеевиковые теплообменники…………………………………………..10
Спиральные теплообменники……………………………………………11
Оросительные теплообменники…………………………………………12
Типа «труба в трубе» теплообменники…………………………………13
Испарители и паропреобразователи…………………………………….14
Библиографический список……………………………………………...16
Серийно
выпускаемые разборные
Рис.3 Разборный пластинчатый теплообменник
Устройство и принцип работы пластинчатого теплообменника достаточно просты. При стягивании пакета пластин образуется ряд каналов, по которым протекают жидкости учавтвующие в процессе теплообмена. Все пластины в пакете одинаковы, только развернуты одна относительно другой на 180 градусов. Такая установка пластин обеспечивает чередование горячих и холодных каналов. В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке), и горячая жидкость передает тепло через стенку пластины. В местах их возможного перетекания находится или стальная пластина или двойное резиновое уплотнение, что практически исключает смешение жидкостей. Такой принцип построения пластинчатого теплообменника позволяет его быстро модифицировать, как в сторону увеличения количества пластин и тем самым увеличить мощность пластинчатого теплообменника, так и легко отремонтировать его в случае выхода из строя резинового уплотнения или теплообменной пластины.
Серийно выпускаемые пластинчатые теплообменники комплектуют пластинами, штампованными из листового металла толщиной 1 мм. Гофры пластин обычно имеют в сечении профиль равностороннего треугольника высотой 4—7 мм и основанием длиной 14—30 мм (для вязких жидкостей до 75 мм). Материал пластин — оцинкованная или коррозионно-стойкая сталь, титан, алюминий. К недостаткам пластинчатых теплообменников следует отнести невозможность использования их при давлении более 1,6 МПа.
Пластины
неразборных теплообменников
Змеевиковые теплообменники
Основным теплообменным элементом является змеевик-труба, согнутая по определенному профилю.
Конструкция змеевикового теплообменника показана на рис. 4. Аппарат имеет корпус 1, в котором размещен змеевик 3 или система змеевиков. Витки змеевика ориентированы по винтовой линии. При большой площади поверхности теплообмена змеевики по длине набирают из нескольких секций. Во избежание прогибов труб при большом числе витков и большом диаметре навивки каждый виток закрепляют болтами на стойках.
Рис. 4 Змеевиковый теплообменник:
Пар вводится в верхнюю часть корпуса через вход п1 со скоростью до 50 м/с, выходит снизу через выход п2. Охлаждающая жидкость поступает в змеевик снизу через вход B1 и движется в нем со скоростью до м/с, выходит через выход В2. Разность давлений теплоносителей в змееви-
ковых аппаратах может достигать 10 МПа.
Скорость движения жидкости мала вследствие большого сечения корпуса аппарата, что обусловливает низкие значения коэффициентов теплоотдачи от наружной стенки змеевика к жидкости (или наоборот). Для увеличения этого коэффициента теплоотдачи повышают скорость движения жидкости путем установки в корпусе аппарата, внутри змеевика, стакана. В этом случае жидкость движется по кольцевому пространству между стенками аппарата и стакана с повышенной скоростью.
Погружные
змеевиковые теплообменники имеют сравнительно
небольшую поверхность теплообмена (до
10-15 м2).
Спиральные теплообменники
Спиральные теплообменники изготовляют с поверхностью теплообмена 10—100 м2; они работают как под вакуумом, так и при давлении до 1 МПа при температуре рабочей среды 20—200 °С. Их можно использовать для реализации теплообмена между рабочими средами жидкость—жидкость, газ—газ, газ—жидкость.
Все большее распространение этих теплообменников в последнее время объясняется главным образом простотой изготовления и компактностью конструкции. В таком аппарате один из теплоносителей поступает в периферийный канал аппарата 3 и, двигаясь по спирали, выходит из верхнего центрального канала 1. Другой теплоноситель поступает в нижний центральный канал 4 и выходит из периферийного канала 2.
Площадь
поперечного сечения каналов
в таком теплообменнике по всей длине
постоянна, поэтому он может работать
с загрязненными жидкостями (загрязнение
смывается потоком теплоносителя).
Рис.5 Спиральный теплообменник
В
спиральных теплообменниках поверхность
теплообмена образована двумя стальными
лентами 1, 2 толщиной 3,5—6 мм и шириной
400—1250 мм (рис. 5), свернутыми в спираль
так, что получаются каналы прямоугольного
профиля, по которым противоточно движутся
теплоносители. Достоинствами спиральных
теплообменников являются повышенная
компактность (большая поверхность теплообмена
в единице объема) при одинаковых коэффициентах
теплопередачи и меньшее гидравлическое
сопротивление для прохода теплоносителей,
недостатками их являются сложность изготовления
и меньшая плотность.
Оросительные теплообменники
Рис.5 Оросительный теплообменник
Оросительные теплообменники применяют в основном для охлаждения жидкостей и газов или конденсации паров.
Оросительный теплообменник представляет собой змеевик (рис. 6) из размещенных друг над другом прямых труб 1, соединенных между собой калачами 2. Снаружи трубы орошают водой, которую подают в желоб 3 для равномерною распределения охлаждающей воды по всей длине верхней трубы змеевика. Отработанная вода поступает в корыто 4 для сбора воды. По трубам протекает охлаждаемый теплоноситель.
Орошающая теплообменник вода при перетекании по наружным стенкам труб частично испаряется. Но при этом происходит необратимая потеря воды. Во избежание сильного увлажнения воздуха в помещении оросительные теплообменники обычно устанавливают на открытом воздухе. По этой же причине, если оросительный теплообменник необходимо установить в помещении, его приходится помещать в громоздкие кожухи.
К
недостаткам этих теплообменников
следует отнести также
Теплообменники «труба в трубе»
Теплообменники типа «труба в трубе» представляют собой набор последовательно соединенных элементов, состоящих из двух концентрически расположенных труб (рис. 6).
Один теплоноситель движется по внутренним трубам 1, другой - по кольцевому зазору между внутренними и наружными 2 трубами. Внутренние трубы соединяются с помощью калачей 3, а наружные с помощью соединительных патрубков 4. Длина элемента теплообменника типа «труба в трубе» обычно составляет 3-6 м, диаметр наружной трубы -76-159 мм, внутренней - 57-108 мм.
Рис. 6 Теплообменники типа «труба в трубе»
Поскольку сечения внутренней трубы и кольцевого зазора невелики, то в этих теплообменниках достигаются значительные скорости движения теплоносителей (до 3 м/с), что приводит к увеличению коэффициентов теплопередачи и тепловых нагрузок, замедлению отложения накипи и загрязнений на стенках труб. Однако двухтрубные теплообменники более громоздки, чем кожухотрубчатые, на их изготовление требуется больше металла на единицу поверхности теплообмена. Двухтрубные теплообменники применяют для процессов со сравнительно небольшими тепловыми нагрузками и соответственно малыми поверхностями теплообмена (не более десятков квадратных метров).
Теплообменники
типа «труба в трубе» используют для охлаждения
или нагревания в системе жидкость—жидкость,
когда расходы теплоносителей невелики
и последние не меняют своего агрегатного
состояния.
Испарители и паропреобразователи
Испарители
применяются для испарения
Испарители и парообразователи широко применяются для уменьшения и восполнения потерь конденсата. Их можно разделить на аппараты с естественной циркуляцией воды между трубками и с принудительной циркуляцией воды в кипятильных трубках.
Давление с испарителя выбирается таким образом, чтобы обеспечивать нужную температуру кипения. Поскольку испарители часто работают под вакуумом, то температура в них ниже нормальной температуры кипения.
В испарителях, в которых жидкость движется снизу вверх по вертикальным трубам, температура кипения жидкости внизу выше, чем вверху, из-за большего гидростатического давления. Таким образом, в нижней части труб кипение отсутствует и температура увеличивается до достижения температуры кипения, соответствующей локальному давлению. Затем возникает кипение вследствие большого подвода теплоты и мгновенного парообразования в перегретой жидкости, и температура уменьшается. Следовательно, разность температур в середине труб меньше, чем на концах, что может привести к значительному снижению характеристик в вертикальных испарителях (как с короткими, так и с длинными трубами), а также испарителях типа «корзины». Для повышения концентрации растворов необходимо учитывать рост температуры кипения при увеличении концентрации.
В
качестве примера испарителя воды с естественной
циркуляцией на рис.7 представлен вертикальный
аппарат. Коэффициент теплопередачи 3000-4000
Вт/м2∙К. Естественная циркуляция
в этом аппарате происходит вследствие
того, что образующаяся в кипятильных
трубках пароводяная эмульсия имеет меньшую
плотность, чем вода в кольцевом зазоре
между корпусом и трубной системой, где
ей сообщается значительно меньшее удельное
количество тепла на единицу объема.
Рис.7 Вертикальный испаритель:
1- парообразующее пространство;
2- патрубок для подачи греющего пара;
3-патрубок
для подачи выпариваемой
4- нижняя крышка;
5- отвод конденсата пара;
6- трубка для сдувок;
7- греющая камера;
8-
трубка для сдувок
9- дренаж сепаратора;
10- сепаратор;
11- патрубок для отвода сухого пара.
При этом в трубках устанавливается подъемное движение пароводяной эмульсии, а в кольцевом зазоре — опускное движение воды. Паровые пузырьки по выходе среды из трубок переходят в паровой объем. Уровень воды в аппарате поддерживается с помощью поплавкового регулятора питания выше верхней трубной решетки. Первичный (греющий) пар поступает в межтрубное пространство греющей камеры. Для отделения влаги из вторичного пара в верхней части парового пространства встроено сепарирующее устройство.
Паропреобразователь
- теплообменный аппарат для испарения
воды; разновидность испарителя, отличающаяся
тем, что конечным продуктом рабочего
процесса является не дистиллят (питательная
вода), а пар водяной.
Библиографический список