Автоматические системы энергосбережения в зданиях мегаполисов

Автор работы: Пользователь скрыл имя, 12 Октября 2017 в 17:08, курсовая работа

Описание работы

Системы теплоснабжения являются крупнейшим потребителем топливно-энергетических ресурсов в стране. От нормального функционирования этих систем зависят условия теплового комфорта в отапливаемых зданиях самочувствие людей, производительность труда и т.д. Выпуск качественной продукции на ряде промышленных предприятии требует строгого соблюдения нормируемых параметров микроклимата. Эффективность предприятий агропромышленного комплекса (урожайность плодов и овощей, выращиваемых в теплицах, продуктивность животноводства) также в большой степени определяется температурно-влажностными режимами в сельскохозяйственных помещениях, обеспечиваемыми работой систем теплоснабжения. Таким образом, проблема повышения качества, надежности, экономичности теплоснабжения имеет государственное значение.

Файлы: 1 файл

NIR.docx

— 125.04 Кб (Скачать файл)

 

Таблица 3.3 – Технические характеристики датчиков

Наименование

Pt1000 датчик наружной температуры

Pt1000 погружной датчик 100мм., медь

Тмин, 0С

минус 50

0

Тмакс. 0С

50

140

Постоянная времени, с

900

2 (в воде)

7 (в воздухе)

Корпус

IP54

 

Материал

поликарбонат

Медь, латунь, полиамид

Электрическое соединение

Две винтовые клеммы под крышкой

Две клеммы, кабельный ввод PG9

Установка

настенная

G1/2A и прокладка


 

 

В зависимости от модели, таким комнатным регулятором можно корректировать параметры настройки электронного регулятора теплового пункта. Все настройки отображаются на дисплее. Кроме того, на нем может быть отражено текущее время, температура наружного воздуха, наибольшее значение температуры наружного воздуха за ночь и многое другое.

 

 

4. Охрана труда

1 Здания (сооружения), в которых  размещаются рабочие места, по  своему строению должны соответствовать  их функциональному назначению  и требованиям безопасности и  охраны труда.

2 Рабочее оборудование  должно соответствовать нормам  безопасности, установленным для  данного вида оборудования, иметь  соответствующие знаки предупреждения  и обеспечиваться ограждениями  или защитными устройствами для  обеспечения безопасности работников  на рабочих местах.

3 Аварийные пути и выходы  работников из помещения должны  оставаться свободными и выводить  на открытый воздух либо в  безопасную зону.

4 Опасные зоны должны  быть четко обозначены. Если рабочие  места находятся в опасных  зонах, в которых ввиду характера  работы существует риск для  работника или падающих предметов, то такие места должны оснащаться  по возможности устройствами, преграждающими  доступ в эти зоны посторонним. По территории организации пешеходы  и технологические транспортные  средства должны перемещаться  в безопасных условиях.

5 Работники должны иметь  средства индивидуальной защиты  для проведения работы в опасных  производственных объектах (участках), в том числе на высоте, подземных  условиях, открытых камерах, на шельфах  морей и внутренних водоемах.

6 В течение рабочего времени температура, естественное и искусственное освещение, а также вентиляция в помещении, где располагаются рабочие места, должны соответствовать безопасным условиям труда.

7 Работники допускаются  на работу с вредными условиями  труда (запыленность, загазованность  и другие факторы) после обеспечения  работодателем безопасных условий  труда.

4.1 Анализ вредных и  опасных факторов на рабочем  месте

Габаритные размеры помещения: ширина – 4 м, длина – 7 м, высота – 2,5 м. Площадь – 28 м2. Объем – 70 м3.

В помещении стены светло-серого цвета, покрашены водоэмульсионной краской, пол покрыт бетоном.

В помещении теплового пункта имеется основное оборудование – блочный тепловой пункт, который производит постоянный шум. Величина шума достигает до 45дБ (допустимый уровень шума по нормам равен 30 дБ [12]). Источниками шума являются отдельные агрегаты блочного теплового пункта, такие как запорно-регулирующая арматура, трубопроводы, циркуляционные насосы систем отопления и горячего водоснабжения. Шум негативно воздействует на организм человека, снижая самочувствие и производительность труда человека.

К следующему вредному фактору относится недостаточная освещенность рабочего места. Так как помещение теплового пункта находится в цокольном этаже, в нем не имеется естественное освещение. Освещение производится только за счет искусственных источников светового излучения, т.е. двумя лампами накаливания по 100 Вт, которые не дают достаточного количества света. Освещенность помещения достигает 200 лк (по СНиП-23-05-95 для зрительной работы IV разряда освещенность должна быть не менее 300 лк ). Недостаточность освещения приводит к снижению зрения, к снижению производительности труда, утомлению, боли в голове и головокружениям и в дальнейшим к полной потери зрения.

Тепловой пункт оборудован аппаратурой учета теплоносителя, электронным регулятором теплопотребления и термосопротивлениями установленные на трубопроводах, которые являются источниками электромагнитного излучения. Электромагнитное излучение отрицательно влияет на организм человека, появляется головная боль, головокружения, плохое самочувствие человека и приводит к сердечно – сосудистым заболеваниям, далее приводит к потере трудоспособности.

Циркуляционные насосы, электронные регуляторы, силовые электрические цепи двигателей циркуляционных насосов и редукторных электроприводов соединяющие их с внешней электрической сетью напряжением 220 В и частотой 50 Гц могут быть опасной угрозой для жизни человека, так как есть риск поражения электрическим током. Также изношенные силовые цепи и электропроводка могут привести к коротким замыканиям и быть причиной пожара.

Поскольку пол помещения теплового пункта покрыт бетоном, он может накапливать пыль, что при уборке помещения может распространиться в воздухе. Пыль может содержать в своем составе различные болезнетворные бактерии и дисперсные частицы, что может привести к профессиональным заболеваниям, общим названием пневмокониоз.

К опасному фактору в помещении теплового пункта относится очень высокая температура поверхности трубопроводов и составных частей блочного теплового пункта (теплообменник, трубы, регулирующая арматура) в порядке 95 – 100 °С. При случайном соприкосновении части тела человека с горячей поверхностью, можно получить серьезный ожог, что может привести к потере трудоспособности человека.

Мероприятия по снижению вредных и опасных факторов на рабочем месте  
Мероприятия по снижению вредных и опасных факторов при работе на тепловом пункте включают следующие пункты:

- снижение шума до допустимого  уровня;

- организация достаточного  освещения рабочего места;

- снижение вредного воздействия  электромагнитного излучения на  организм человека;

- обеспечение безопасности  при работе с электрическими  оборудованиями теплового пункта;

- мероприятия по защите  от пыли;

- защита от ожога при  работе с оборудованием блочного  теплового пункта.

Защита от шумов циркуляционных насосов блочного теплового пункта осуществляется с помощью обшивки стен материалами со свойствами шумоизоляции, такими как пористые полимерные материалы, разрешенные к применению органами санитарно-эпидемиологического контроля. Шумы, возникающие в трубопроводе систем отопления и горячего водоснабжения можно снизить применением кожухов со свойством шумоизоляции. Необходимо своевременно смазывать подшипники и валы двигателей циркуляционных насосов, чтобы снизить грубое трение и соответственно снизит шум.

Организация достаточного освещения в тепловом пункте можно достичь за счет замены ламп накаливания на люминесцентные лампы, которые по сравнению с лампами накаливания имеют существенные преимущества:

- по спектральному составу  света они близки к дневному, естественному освещению;

- обладают более высоким  КПД (в 1.5-2 раза выше, чем КПД ламп  накаливания);

- обладают повышенной  светоотдачей (в 3-4 раза выше, чем  у ламп накаливания);

- более длительный срок  службы.

Тепловые пункты должны оборудоваться аварийным освещением [4].

Снижение вредного воздействия электромагнитного излучения на организм человека излучаюшими оборудованием узла учета и электронным регулятором осуществляется за счет экранирования. Защитные экраны (они должны быть заземлены) применяют в виде камер или шкафов, в которые помещают аппаратуру узла учета и электронный регулятор теплопотребления. Защитные экраны выполняются из металлических листов, сетки, ткани с микропроводом и др. В случае высокой интенсивности ЭМИ узла учета и электронного регулятора соответствующие установки следует размещать в отдельных помещениях, имеющих непосредственный выход в коридор или наружу. Необходимо четыре раза по 20 минут в течении рабочего дня выводит рабочих на улицу, что также снизит воздействие ЭМИ на организм человека.

Для обеспечения безопасности при работе с электротехническими оборудованиями теплового пункта необходимо заземлить все узлы блочного теплового пункта, подключенные к внешней электрической сети. Периодически проверять изоляцию проводников всех силовых цепей соединяющие узлы управления насосов и исполнительных механизмов блочного теплового пункта. Для исключения случайного соприкосновения части тела с проводами, необходимо аккуратно собрать всю электропроводку в единую шину и оградить их электроизоляционным материалом. Рекомендуется повесить стенды с содержанием правил работы с ЭТ оборудованиями и правила электробезопасности, в том числе с электронным регулятором и электроприводами. Рекомендуется выдать слесарю по ремонту электрооборудования теплового пункта средства индивидуальной защиты (резиновые перчатки, резиновые сапоги со свойством электроизоляции).

Для защиты рабочего персонала теплового пункта от пыли необходимо покрыть пол керамическим покрытием (кафелем), что облегчить уборку помещения теплового пункта и исключит возможность накапливания пыли. Следует каждый день выполнять влажную уборку помещения теплового пункта, уделяя особое внимание на поверхность пола и рабочим поверхностям оборудовании блочного теплового пункта. Следует своевременно чистить поверхности составляющих установок блочного теплового пункта, скапливающие пыль.

Чтобы снизить риск получения ожога рабочего персонала технологическими оборудованиями блочного теплового пункта с горячей поверхностью, необходимо установить ограждающие столбы и металлические ограждения по всему периметру блочного теплового пункта. Рекомендуется повесить на ограждения таблички с надписью «Осторожно, высокая температура»

4.3 Расчетная часть

Расчет освещенности рабочего места сводится к выбору системы освещения, определению необходимого числа светильников, их типа и размещения. Процесс работы слесаря КИПиА в таких условиях, когда естественное освещение недостаточно. Исходя из этого, следует произвести расчет параметров искусственного освещения.

Искусственное освещение в тепловом пункте выполняется посредством ламп накаливания. Рекомендуется заменить источник освещение на люминесцентные лампы, которые по сравнению с лампами накаливания имеют существенные преимущества:

- по спектральному составу  света они близки к дневному, естественному освещению;

- обладают более высоким  КПД (в 1.5-2 раза выше, чем КПД ламп  накаливания);

- обладают повышенной  светоотдачей (в 3-4 раза выше, чем  у ламп накаливания);

- более длительный срок  службы.

Метод светового потока позволяет обеспечить среднюю освещенность поверхности с учетом всех падающих на нее прямых и отраженных потоков света. В соответствии с этими особенностями метод применяют для расчета общего равномерного освещения горизонтальных поверхностей.

Расчет освещения производится для комнаты площадью 28 м2. Размеры помещения составляют : длина А=7 м, ширина В=4 м, высота h =2,5 м. В помещении работают 3 сотрудников, т.е. на каждого приходится по 9,3 м2, что соответствует санитарным нормам (не менее 6 кв.м).

Источник света в помещении – люминесцентные лампы, высота подвеса светильников h = 2,4 м, расстояние между светильниками L = 1 м. Окраска стен светлая, поэтому ориентировочно можно принять коэффициент отражения стен и потолка соответственно Рс=30%, Рп=50%, Рр=10%. Число светильников N = 4.

Определим световой поток, падающий на поверхность, по формуле:

 

 (4.1)

 

где ЕН – нормируемая минимальная освещенность, лк (определяется по таблице). Работу оператора, в соответствии с этой таблицей, можно отнести к IV разряду зрительной работы, следовательно, минимальная освещенность будет Е = 300 Лк при газоразрядных лампах;

kз- коэффициент запаса, учитывающий уменьшение светового потока лампы в результате загрязнения светильников в процессе эксплуатации (его значение определяется по таблице коэффициентов запаса для различных помещений и в нашем случае k = 1,3);

S - площадь освещаемого  помещения ( в нашем случае s = 28 м2 );

z - отношение средней освещенности  к минимальной (обычно принимается  равным 1,2-1,5 , пусть z = 1,2);

n - коэффициент использования, (выражается отношением светового  потока, падающего на расчетную  поверхность, к суммарному потоку  всех ламп и исчисляется в  долях единицы; зависит от характеристик  светильника, размеров помещения, окраски  стен и потолка, характеризуемых  коэффициентами отражения от  стен (Рс) и потолка (Рп)). Значение n определим по таблице коэффициентов использования различных светильников. Для этого вычислим индекс помещения по формуле:

i = AB/[h(A+B)], (4.2)

где А – длина помещения теплового пункта, м;

В – ширина помещения теплового пункта, м;

h – высота помещения  теплового пункта, м.

подставив значения, получим i =1,018.

Зная индекс помещения i, Рс, Рр и Рп, по таблице находим n = 0,33. Подставим все значения в формулу для определения светового потока Ф:

Для обеспечения световым потоком помещение теплового пункта равным 9927,3 Лм, необходимо выбрать четыре люминесцентные лампы мощностью 80 Вт. При выборе осветительных приборов используем светильники типа ОД. Выбранные светильники с лампами рекомендуется установить на потолке помещения теплового пункта в два ряда, по два светильника в каждом ряду, поскольку такое освещение гарантирует равномерное и достаточное освещение для зрительной работы IV разряда.

4.4 Пожарная безопасность

Причинами пожара и возгораний в помещении теплового пункта являются:

Информация о работе Автоматические системы энергосбережения в зданиях мегаполисов